Abstract.A spectroscopic analysis of 115 wintertime particulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral selectivity. This is consistent with prior work that has demonstrated that organic carbon (OC), in addition to black carbon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorption to OC and BC and find that the absorptionÅngström exponent of the light-absorbing OC in these samples ranges from 3.0 to 7.4 and averages 5.0. Further, we calculate that OC would account for 14 % and BC would account for 86 % of solar radiation absorbed by the wood smoke in the atmosphere (integrated over the solar spectrum from 300 to 2500 nm). OC would contribute 49 % of the wood smoke particulate matter absorption of ultraviolet solar radiation at wavelengths below 400 nm and, therefore, may affect tropospheric photochemistry. These results illustrate that BC is the dominant light-absorbing particulate matter species in atmospheres burdened with residential wood smoke and OC absorption is secondary but not insignificant. Further, these results add to the growing body of evidence that lightabsorbing OC is ubiquitous in atmospheres influenced by biomass burning and may be important to include when considering particulate matter effects on climate.
Continuous, size resolved particle measurements were performed in two houses in order to determine size-dependent particle penetration into and deposition in the indoor environment. The experiments consisted of three parts: (1) measurement of the particle loss rate following artificial elevation of indoor particle concentrations, (2) rapid reduction in particle concentration through induced ventilation by pressurization of the houses with HEPA-filtered air, and (3) measurement of the particle concentration rebound after house pressurization stopped. During the particle concentration decay period, when indoor concentrations are very high, losses due to deposition are large compared to gains due to particle infiltration. During the concentration rebound period, the opposite is true. The large variation in indoor concentration allows the effects of penetration and deposition losses to be separated by the transient, two-parameter model we employed to analyze the data. For the two houses studied, we found that as particles increased in diameter from 0.1 to 10 µm, penetration factors ranged from ∼1 to 0.3 and deposition loss rates ranged from 0.1 and 5 h −1 . The decline in penetration factor with increasing particle size was less pronounced in the house with the larger normalized leakage area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.