In literature, the machine learning-based studies of sentiment analysis are usually supervised learning which must have pre-labeled datasets to be large enough in certain domains. Obviously, this task is tedious, expensive and time-consuming to build, and hard to handle unseen data. This paper has approached semi-supervised learning for Vietnamese sentiment analysis which has limited datasets. We have summarized many preprocessing techniques which were performed to clean and normalize data, negation handling, intensification handling to improve the performances. Moreover, data augmentation techniques, which generate new data from the original data to enrich training data without user intervention, have also been presented. In experiments, we have performed various aspects and obtained competitive results which may motivate the next propositions.
The annotated dataset is an essential requirement to develop an artificial intelligence (AI) system effectively and expect the generalization of the predictive models and to avoid overfitting. Lack of the training data is a big barrier so that AI systems can broaden in several domains which have no or missing training data. Building these datasets is a tedious and expensive task and depends on the domains and languages. This is especially a big challenge for low-resource languages. In this paper, we experiment and evaluate many various approaches on sentiment analysis problems so that they can still obtain high performances under limited training data. This paper uses the preprocessing techniques to clean and normalize the data and generate the new samples from the limited training dataset based on many text augmentation techniques such as lexicon substitution, sentence shuffling, back translation, syntax-tree transformation, and embedding mixup. Several experiments have been performed for both well-known machine learning-based classifiers and deep learning models. We compare, analyze, and evaluate the results to indicate the advantage and disadvantage points of the techniques for each approach. The experimental results show that the data augmentation techniques enhance the accuracy of the predictive models; this promises that smart systems can be applied widely in several domains under limited training data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.