In literature, the machine learning-based studies of sentiment analysis are usually supervised learning which must have pre-labeled datasets to be large enough in certain domains. Obviously, this task is tedious, expensive and time-consuming to build, and hard to handle unseen data. This paper has approached semi-supervised learning for Vietnamese sentiment analysis which has limited datasets. We have summarized many preprocessing techniques which were performed to clean and normalize data, negation handling, intensification handling to improve the performances. Moreover, data augmentation techniques, which generate new data from the original data to enrich training data without user intervention, have also been presented. In experiments, we have performed various aspects and obtained competitive results which may motivate the next propositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.