Background Adeno-associated virus (AAV) vectors are stored and shipped frozen which poses logistic and economic barriers for global access to these therapeutics. To address this issue, we developed a method to stabilize AAV serotype 9 (AAV9) in a film matrix that can be stored at ambient temperature and administered by systemic injection. Methods AAV9 expressing the luciferase transgene was mixed with formulations, poured into molds and films dried under aseptic conditions. Films were packaged in individual particle-free bags with foil overlays and stored at various temperatures under controlled humidity. Recovery of AAV9 from films was determined by serial dilution of rehydrated film in media and infection of HeLa RC32 cells. Luciferase expression was compared to that of films rehydrated immediately after drying. Biodistribution of vector was determined by in vivo imaging and quantitative real-time PCR. Residual moisture in films was determined by Karl Fischer titration. Results AAV9 embedded within a film matrix and stored at 4 °C for 5 months retained 100% of initial titer. High and low viscosity formulations maintained 90 and 85% of initial titer after 6 months at 25 °C respectively. AAV was not detected after 4 months in a Standard Control Formulation under the same conditions. Biodistribution and transgene expression of AAV stored in film at 25 or 4 °C were as robust as vector stored at −80 °C in a Standard Control Formulation. Conclusions These results suggest that storage of AAV in a film matrix facilitates easy transport of vector to remote sites without compromising in vivo performance.
1α,25‐Dihydroxyvitamin D3 (also called 1,25(OH)2D3 or calcitriol) is the biologically active form of vitamin D, which functions as a ligand to the vitamin D receptor (VDR). It was previously reported that intestinal cytochrome P450 3A (CYP3A) expression was altered by 1,25(OH)2D3‐mediated VDR activation. However, to clarify whether the change in CYP3A subfamily expression by VDR activation can affect metabolic function, further evidence is needed to prove the effect of 1,25(OH)2D3 treatment on CYP3A‐mediated drug metabolism and pharmacokinetics. Here, we report the effects of 1,25(OH)2D3 on CYP3A activity and in vivo pharmacokinetics of buspirone in Sprague–Dawley rats. CYP3A mRNA expression and CYP3A‐mediated testosterone metabolism were enhanced in the intestine but were unaffected in the livers of rats treated with 1,25(OH)2D3. Notably, the oral pharmacokinetic profile of buspirone (CYP3A substrate drug) and 6′‐hydroxybuspirone (major active metabolite of buspirone formed via CYP3A‐mediated metabolism) was significantly altered, while its intravenous pharmacokinetic profile was not affected by 1,25(OH)2D3 treatment. To the best of our knowledge, this study provides the first reported data regarding the effects of 1,25(OH)2D3 treatment on the in vivo pharmacokinetics of intravenous and oral buspirone in rats, by the differential modulation of hepatic and intestinal CYP3A activity. Our present results could lead to further studies in clinically significant CYP3A‐mediated drug–nutrient interactions with 1,25(OH)2D3, including 1,25(OH)2D3–buspirone interaction. Preclinical Research & Development
The compound 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of vitamin D3 and a representative ligand of the vitamin D receptor (VDR). Previous studies have described the impacts of 1,25(OH)2D3 on a small number of cytochrome P450 (CYP) and uridine diphosphate-glucuronyltransferase (UGT) enzymes, but comparatively little is known about interactions between several important CYP and UGT isoforms and 1,25(OH)2D3 in vitro and/or in vivo. Thus, we investigated the effects of 1,25(OH)2D3 on the gene and protein expressions and functional activities of selected CYPs and UGTs and their impacts on drug pharmacokinetics in rats. The mRNA/protein expressions of Cyp2b1 and Cyp2c11 were downregulated in rat liver by 1,25(OH)2D3. Consistently, the in vitro metabolic kinetics (Vmax and CLint) of BUP (bupropion; a Cyp2b1 substrate) and TOL (tolbutamide; a Cyp2c11 substrate) were significantly changed by 1,25(OH)2D3 treatment in liver microsomes, but the kinetics of acetaminophen (an Ugt1a6/1a7/1a8 substrate) remained unaffected, consistent with Western blotting data for Ugt1a6. In rat pharmacokinetic studies, the total body clearance (CL) and nonrenal clearance (CLNR) of BUP were significantly reduced by 1,25(OH)2D3, but unexpectedly, the total area under the plasma concentration versus time curve from time zero to infinity (AUC) of hydroxybupropion (HBUP) was increased probably due to a marked reduction in the renal clearance (CLR) of HBUP. Additionally, the AUC, CL, and CLNR for TOL and the AUC for 4-hydroxytolbutamide (HTOL) were unaffected by 1,25(OH)2D3 in vivo. Discrepancies between observed in vitro metabolic activity and in vivo pharmacokinetics of TOL were possibly due to a greater apparent distribution volume at the steady-state (Vss) and lower plasma protein binding in 1,25(OH)2D3-treated rats. Our results suggest possible drug-drug and drug-nutrient interactions and provide additional information concerning safe drug combinations and dosing regimens for patients taking VDR ligand drugs including 1,25(OH)2D3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.