Until recently, Industrial Control Systems (ICSs) used "air-gap" security measures, where every node of the ICS network was isolated from other networks, including the Internet, by a physical disconnect. Attaching ICS networks to the Internet benefits companies and engineers who use them. However, as these systems were designed for use in the air-gapped security environment, protocols used by ICSs contain little to no security features and are vulnerable to various attacks. This paper proposes an approach to detect the intrusions into network attached ICSs by measuring and verifying data that is transmitted through the network but is not inherently the data used by the transmission protocol -network telemetry. Using simulated PLC units, the developed IDS was able to achieve 94.3% accuracy when differentiating between machines of an attacker and engineer on the same network, and 99.5% accuracy when differentiating between attacker and engineer on the Internet. Stanislav Ponomarev is a Ph.D. candidate of engineering at Louisiana Tech University with concentration in cyber security. His research topics of interest include image enhancement, hard drive forensics, malicious application detection, network intrusion detection, and windows executable memory attacks.Travis Atkison received the B.
Data Science is a successful study that incorporates varying techniques and theories from distinct fields including Mathematics, Computer Science, Economics, Business and domain knowledge. Among all components in data science, domain knowledge is the key to create high quality data products by data scientists. Wineinformatics is a new data science application that uses wine as the domain knowledge and incorporates data science and wine related datasets, including physicochemical laboratory data and wine reviews. This paper produces a brand-new dataset that contains more than 100,000 wine reviews made available by the Computational Wine Wheel. This dataset is then used to quantitatively evaluate the consistency of the Wine Spectator and all of its major reviewers through both white-box and black-box classification algorithms. Wine Spectator reviewers receive more than 87% accuracy when evaluated with the SVM method. This result supports Wine Spectator’s prestigious standing in the wine industry.
Although wine has been produced for several thousands of years, the ancient beverage has remained popular and even more affordable in modern times. Among all wine making regions, Bordeaux, France is probably one of the most prestigious wine areas in history. Since hundreds of wines are produced from Bordeaux each year, humans are not likely to be able to examine all wines across multiple vintages to define the characteristics of outstanding 21st century Bordeaux wines. Wineinformatics is a newly proposed data science research with an application domain in wine to process a large amount of wine data through the computer. The goal of this paper is to build a high-quality computational model on wine reviews processed by the full power of the Computational Wine Wheel to understand 21st century Bordeaux wines. On top of 985 binary-attributes generated from the Computational Wine Wheel in our previous research, we try to add additional attributes by utilizing a CATEGORY and SUBCATEGORY for an additional 14 and 34 continuous-attributes to be included in the All Bordeaux (14,349 wine) and the 1855 Bordeaux datasets (1359 wines). We believe successfully merging the original binary-attributes and the new continuous-attributes can provide more insights for Naïve Bayes and Supported Vector Machine (SVM) to build the model for a wine grade category prediction. The experimental results suggest that, for the All Bordeaux dataset, with the additional 14 attributes retrieved from CATEGORY, the Naïve Bayes classification algorithm was able to outperform the existing research results by increasing accuracy by 2.15%, precision by 8.72%, and the F-score by 1.48%. For the 1855 Bordeaux dataset, with the additional attributes retrieved from the CATEGORY and SUBCATEGORY, the SVM classification algorithm was able to outperform the existing research results by increasing accuracy by 5%, precision by 2.85%, recall by 5.56%, and the F-score by 4.07%. The improvements demonstrated in the research show that attributes retrieved from the CATEGORY and SUBCATEGORY has the power to provide more information to classifiers for superior model generation. The model build in this research can better distinguish outstanding and class 21st century Bordeaux wines. This paper provides new directions in Wineinformatics for technical research in data science, such as regression, multi-target, classification and domain specific research, including wine region terroir analysis, wine quality prediction, and weather impact examination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.