An important data gap in our understanding of the phyllosphere surrounds the origin of the many microbes described as phyllosphere communities. Most sampling in phyllosphere research has focused on the collection of microbiota without the use of a control, so the opportunity to determine which taxa are actually driven by the biology and physiology of plants as opposed to introduced by environmental forces has yet to be fully realized. To address this data gap, we used plastic plants as inanimate controls adjacent to live tomato plants (phyllosphere) in the field with the hope of distinguishing between bacterial microbiota that may be endemic to plants as opposed to introduced by environmental forces. Using 16S rRNA gene amplicons to study bacterial membership at four time points, we found that the vast majority of all species-level operational taxonomic units were shared at all time-points. Very few taxa were unique to phyllosphere samples. A higher taxonomic diversity was consistently observed in the control samples. The high level of shared taxonomy suggests that environmental forces likely play a very important role in the introduction of microbes to plant surfaces. The observation that very few taxa were unique to the plants compared to the number that were unique to controls was surprising and further suggests that a subset of environmentally introduced taxa thrive on plants. This finding has important implications for improving our approach to the description of core phytobiomes as well as potentially helping us better understand how foodborne pathogens may become associated with plant surfaces.
The advent of simultaneously collected imaging-genetics data in large study cohorts provides an unprecedented opportunity to assess the causal effect of brain imaging traits on externally measured experimental results (e.g., cognitive tests) by treating genetic variants as instrumental variables. However, classic Mendelian Randomization methods are limited when handling high-throughput imaging traits as exposures to identify causal effects. We propose a new Mendelian Randomization framework to jointly select instrumental variables and imaging exposures, and then estimate the causal effect of multivariable imaging data on the outcome variable. We validate the proposed method with extensive data analyses and compare it with existing methods. We further apply our method to evaluate the causal effect of white matter microstructure integrity (WM) on cognitive function. The findings suggest that our method achieved better performance regarding sensitivity, bias, and false discovery rate compared to individually assessing the causal effect of a single exposure and jointly assessing the causal effect of multiple exposures without dimension reduction. Our application results indicated that WM measures across different tracts have a joint causal effect significantly impact on the cognitive function among the participants from the UK Biobank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.