A multi-machine database for the H-mode scrape-off layer power fall-off length, λq in JET, DIII-D, ASDEX Upgrade, C-Mod, NSTX and MAST has been assembled under the auspices of the International Tokamak Physics Activity. Regression inside the database finds that the most important scaling parameter is the poloidal magnetic field (or equivalently the plasma current), with λq decreasing linearly with increasing Bpol. For the conventional aspect ratio tokamaks, the regression finds , yielding λq,ITER ≅ 1 mm for the baseline inductive H-mode burning plasma scenario at Ip = 15 MA. The experimental divertor target heat flux profile data, from which λq is derived, also yield a divertor power spreading factor (S) which, together with λq, allows an integral power decay length on the target to be estimated. There are no differences in the λq scaling obtained from all-metal or carbon dominated machines and the inclusion of spherical tokamaks has no significant influence on the regression parameters. Comparison of the measured λq with the values expected from a recently published heuristic drift based model shows satisfactory agreement for all tokamaks.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ( $B_0 = 12.2$ T), compact ( $R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ( $H_{98,y2} = 0.7$ ) and, with the nominal assumption of $H_{98,y2} = 1$ , SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ( $\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$ ), high temperature ( $\langle T_e \rangle \approx 7$ keV) and high power density ( $P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$ ) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
The XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates. The simulation results compare well against the empirical scaling λ q ∝1/B P γ obtained from present tokamak devices, where λ q is the divertor heat-flux width mapped to the outboard midplane, γ=1.19 as found by T. Eich et al. [Nucl. Fusion 53 (2013) 093031], and B P is the magnitude of the poloidal magnetic field at the outboard midplane separatrix surface. This empirical scaling predicts λ q ≲1mm when extrapolated to ITER, which would require operation with very high separatrix densities (n sep /n Greenwald > 0.6) [Kukushkin, A. et al., Jour. Nucl. Mat. 438 (2013) S203] in the Q=10 scenario to achieve semi-detached plasma operation and high radiative fractions for acceptable divertor power fluxes. Using the same simulation code and technique, however, the projected λ q for ITER's model plasma is 5.9 mm, which could be suggesting that operation in the ITER Q=10 scenario with acceptable divertor power loads may be obtained over a wider range of plasma separatrix densities and radiative fractions. The physics reason behind this difference is, according to the XGC1 results, that while the ion magnetic drift contribution to the divertor heat-flux width is wider in the present tokamaks, the turbulent electron contribution is wider in ITER. Study will continue to verify further this important projection. A high current C-Mod discharge is found to be in a mixed regime: While the heat-flux width by the ion neoclassical magnetic drift is still wider than the turbulent electron heat-flux width, the heatflux magnitude is dominated by the narrower electron heat-flux.
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which I p varies by a factor 3, B t varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with I p. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher I p , similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, f GW , are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a/I p. This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport.
The structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrapeoff layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s −1 . A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.