Mixture based synthetic combinatorial libraries offer a tremendous enhancement for the rate of drug discovery, allowing the activity of millions of compounds to be assessed through the testing of exponentially fewer samples. In this study, we used a scaffold-ranking library to screen 37 different libraries for antibacterial activity against the ESKAPE pathogens. Each library contained between 10000 and 750000 structural analogues for a total of >6 million compounds. From this, we identified a bis-cyclic guanidine library that displayed strong antibacterial activity. A positional scanning library for these compounds was developed and used to identify the most effective functional groups at each variant position. Individual compounds were synthesized that were broadly active against all ESKAPE organisms at concentrations <2 μM. In addition, these compounds were bactericidal, had antibiofilm effects, showed limited potential for the development of resistance, and displayed almost no toxicity when tested against human lung cells and erythrocytes. Using a murine model of peritonitis, we also demonstrate that these agents are highly efficacious in vivo.
Nicotine binds to nicotinic acetylcholine receptors (nAChR), which can exist as many different subtypes. The α4β2 nAChR is the most prevalent subtype in the brain and possesses the most evidence linking it to nicotine seeking behavior. Herein we report the use of mixture based combinatorial libraries for the rapid discovery of a series of α4β2 nAChR selective compounds. Further chemistry optimization provided compound 301, which was characterized as a selective α4β2 nAChR antagonist. This compound displayed no agonist activity but blocked nicotine-induced depolarization of HEK cells with an IC50 of approximately 430 nM. 301 demonstrated nearly 500-fold selectivity for binding and 40-fold functional selectivity for α4β2 over α3β4 nAChR. In total over 5 million compounds were assessed through the use of just 170 samples in order to identify a series of structural analogues suitable for future optimization toward the goal of developing clinically relevant smoking cessation medications.
ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well (J. Biol. Chem. 2013, 288, 22871). As a result of SAR studies presented herein, we obtained several highly selective ADAM17 inhibitors, six of which were further characterized in biochemical and cell-based assays. Lead compounds exhibited low cellular toxicity and high potency and selectivity for ADAM17. In addition, several of the leads inhibited ADAM17 in a substrate-selective manner, which has not been previously documented for inhibitors of the ADAM family. These findings suggest that targeting exosites of ADAM17 can be used to obtain highly desirable substrate-selective inhibitors. Additionally, current inhibitors can be used as probes of biological activity of ADAM17 in various in vitro and, potentially, in vivo systems.
The
central melanocortin-3 and melanocortin-4 receptors (MC3R,
MC4R) are key regulators of body weight and energy homeostasis. Herein,
the discovery and characterization of first-in-class small molecule
melanocortin agonists with selectivity for the melanocortin-3 receptor
over the melanocortin-4 receptor are reported. Identified via “unbiased”
mixture-based high-throughput screening approaches, pharmacological
evaluation of these pyrrolidine bis-cyclic guanidines resulted in
nanomolar agonist activity at the melanocortin-3 receptor. The pharmacological
profiles at the remaining melanocortin receptor subtypes tested indicated
similar agonist potencies at both the melanocortin-1 and melanocortin-5
receptors and antagonist or micromolar agonist activities at the melanocortin-4
receptor. This group of small molecules represents a new area of chemical
space for the melanocortin receptors with mixed receptor pharmacology
profiles that may serve as novel lead compounds to modulate states
of dysregulated energy balance.
The aminoglycoside 6′-N-acetyltransferase type Ib (AAC(6′)-Ib) is a common cause of resistance to amikacin and other aminoglycosides in Gram-negatives. Utilization of mixture-based combinatorial libraries and application of the positional scanning strategy identified an inhibitor of AAC(6′)-Ib. This inhibitor’s chemical structure consists of a pyrrolidine pentamine scaffold substituted at four locations (R1, R3, R4, and R5). The substituents are two S-phenyl groups (R1 and R4), an S-hydroxymethyl group (R3), and a 3-phenylbutyl group (R5). Another location, R2, does not have a substitution, but it is named because its stereochemistry was modified in some compounds utilized in this study. Structure–activity relationship (SAR) analysis using derivatives with different functionalities, modified stereochemistry, and truncations was carried out by assessing the effect of the addition of each compound at 8 µM to 16 µg/mL amikacin-containing media and performing checkerboard assays varying the concentrations of the inhibitor analogs and the antibiotic. The results show that: (1) the aromatic functionalities at R1 and R4 are essential, but the stereochemistry is essential only at R4; (2) the stereochemical conformation at R2 is critical; (3) the hydroxyl moiety at R3 as well as stereoconformation are required for full inhibitory activity; (4) the phenyl functionality at R5 is not essential and can be replaced by aliphatic groups; (5) the location of the phenyl group on the butyl carbon chain at R5 is not essential; (6) the length of the aliphatic chain at R5 is not critical; and (7) all truncations of the scaffold resulted in inactive compounds. Molecular docking revealed that all compounds preferentially bind to the kanamycin C binding cavity, and binding affinity correlates with the experimental data for most of the compounds evaluated. The SAR results in this study will serve as the basis for the design of new analogs in an effort to improve their ability to induce phenotypic conversion to susceptibility in amikacin-resistant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.