Alzheimer’s disease (AD) is a common, chronic expensive debilitating neurodegenerative disease with no current treatments to prevent the physical deterioration of the brain and the consequent cognitive deficits. The current pathophysiology of Alzheimer’s disease is the accumulation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein and amyloid-beta (Aβ) plaques. Antibody therapy of Tau and Amyloid beta, vaccines and other methods to decrease Tau and or Amyloid have not been successful after considerable pharmaceutical and biotech efforts. For example, Eli Lilly announced a major change to its closely watched clinical trial for the Alzheimer’s drug solanezumab which failed to reach statistical significance. Recently, a report on animal models using photomodulation with near infrared light to treat AD pathology in K369I tau transgenic model (K3) l engineered to develop neurofibrillary tangles, and the APPs/PSEN1dE9 transgenic model (APP/PS1) to develop amyloid plaques. Mice were treated with NIR 20 times over a four-week period and NIR treatment (600–1000 nm) was associated with a reduction in the size and number of amyloid-β plaques in the neocortex and hippocampus. We now report a small pilot double blind, placebo-controlled trial (n=11) 6 active, 3 controls and 2 dropouts assessing the effect of 28 consecutive, sixminute transcranial sessions of near infrared (NIR) stimulation using 1060–1080 nm light emitting diodes. Subjects were independently diagnosed with dementia conducted in an outpatient behavioral healthcare clinic. IRB approval was obtained through the Quietmind Foundation’s institutional review Board (IRB). Results showed changes in executive functioning; clock drawing, immediate recall, praxis memory, visual attention and task switching (Trails A&B) as well as a trend of improved EEG amplitude and connectivity measures. Neuroplasticity has also been reported with NIR light stimulation and mitochondrial enhancement.
The changes of insulin signaling, calcium signaling, mitochondrial decline and oxidative stress have been implicated in the hyperphosphorylation of tau protein found in Downs syndrome dementia. Such pathogenic etiologies have clear implications in the prevention and therapy of Down's syndrome (DS) dementia. The occurrence of methylation defects in DS is discussed and though controversial, more recent studies do show significance. Kinases such as DYK1A and GlcNA cylation are discussed as well as a Cdk5 inhibitory peptide (CIP). Even sleep medicine has been demonstrated in that seniors, who have better sleep, suffer less cognitive decline than those with sleep problems with enhanced clearance of β amyloid and tau neurofibrillary tangles. Studies have reported a high incidence of sleep problems in Down's. Environmental toxin arsenite and low dose methyl mercury have been speculated to induce tau phosphorylation. Dietary changes to low glycemic carbohydrate and gluten avoidance should be made. Adding B vitamins may be equally important to prevent brain atrophy especially in those with MTHFR and MTRR gene defects. The therapeutic strategy of reducing insulin resistance by up regulation of PPARS alpha with glitazones and decreasing calcium influx into the mitochondria is mentioned. Protecting mitochondrial decline from oxidative stress with antioxidants, and treatment with CBD, polyphenols, ellagic acid, resveratrol and other grape bioflavinoids and moderate magnetic fields is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.