We demonstrate a method for integrating environmental effects into a computable general equilibrium model. This is a critical step forward toward the development of improved integrated assessment models of environmental change. We apply the method to examine the economic consequences of air pollution on human health for the US for the period from 1970 to 2000. The pollutants include tropospheric ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and particulate matter. We apply this method to the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the economy that has been widely used to study climate change policy. The method makes use of traditional valuation studies, incorporating this information so that estimates of welfare change are consistent with welfare valuation of the consumption of market goods and services. We estimate the benefits of air pollution regulations in USA rose steadily from 1975 to 2000 from $50 billion to $400 billion (from 2.1% to 7.6% of market consumption). Our estimated benefits of regulation are somewhat lower than the original estimates made by the US Environmental Protection Agency, and we trace that result to our development of a stock model of pollutant exposure that predicts that the benefits from reduced chronic air pollution exposure will only be gradually realized. We also estimate the economic burden of uncontrolled levels of air pollution over that period. The uncertainties in these estimates are large which we show through simulations using 95% confidence limits on the epidemiological dose-response relationships Climatic Change (2008) 88:59-92
Formation flying spacecraft has been identified as an enabling technology for many future NASA and DoD space missions. However, this is still, as yet, an unproven technology. Thus, to minimize the mission risk associated with these new formation flying technologies, testbeds are required that will enable comprehensive simulation and experimentation. This paper presents an innovative hardware-in-the-loop testbed for developing and testing estimation and control architectures for formation flying spacecraft. The testbed consists of multiple computers that each emulate a separate spacecraft in the fleet. These computers are restricted to communicate via serial cables to emulate the actual inter-spacecraft communications expected on-orbit. A unique feature of this testbed is that all estimation and control algorithms are implemented in Matlab, which greatly enhances its flexibility and reconfigurability and provides an excellent environment for rapidly comparing numerous control and estimation algorithms and architectures. A multi-tasking/multi-thread software environment is simulated by simultaneously running several instances of Matlab on each computer. The paper contains initial simulation results using one particular estimation, coordination, and control architecture for a fleet of 3 spacecraft, but current work is focused on extending that to larger fleets with different architectures. It is expected that this testbed will play a pivotal role in determining and validating the data flows and timing requirements for upcoming formation flying missions such as Orion and TechSat21.
The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short-and long-term visitors to the Program. The Program involves sponsorship and active participation by industry, government, and non-profit organizations.To inform processes of policy development and implementation, climate change research needs to focus on improving the prediction of those variables that are most relevant to economic, social, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to the economic, technological, and political forces that drive emissions, and to the results of international agreements and mitigation. Further, assessments of possible societal and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation of the uncertainties of climate science.This report is one of a series intended to communicate research results and improve public understanding of climate issues, thereby contributing to informed debate about the climate issue, the uncertainties, and the economic and social implications of policy alternatives. Titles in the Report Series to date are listed on the inside back cover.
The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independent policy analysis, and public education in global environmental change. It seeks to provide leadership in understanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridge many key areas of the needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short-and long-term visitors to the Program. The Program involves sponsorship and active participation by industry, government, and non-profit organizations.To inform processes of policy development and implementation, climate change research needs to focus on improving the prediction of those variables that are most relevant to economic, social, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to the economic, technological, and political forces that drive emissions, and to the results of international agreements and mitigation. Further, assessments of possible societal and ecosystem impacts, and analysis of mitigation strategies, need to be based on realistic evaluation of the uncertainties of climate science.This report is one of a series intended to communicate research results and improve public understanding of climate issues, thereby contributing to informed debate about the climate issue, the uncertainties, and the economic and social implications of policy alternatives. Titles in the Report Series to date are listed on the inside back cover. AbstractScientists and policy makers have become increasingly aware of the need to jointly study climate change and air pollution because of the interactions among policy measures and in the atmospheric chemistry that creates the constituents of smog and affects the lifetimes of important greenhouse gases such as methane. Tropospheric ozone and aerosols, recognized constituents of air pollution, have important effects on the radiative balance of the atmosphere. Existing methods for estimating the economic implications of environmental damage do not provide an immediate approach to assess the economic and policy interactions. Towards that end, we develop a methodology for integrating the health effects from exposure to air pollution into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium economic model of the economy that has been widely used to study climate change policy. The approach incorporates market and non-market effects of air pollution on human health, and ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.