A fundamentally mode-locked soliton Er-fiber laser generating 167 fs pulses at 194 MHz via polarization additive-pulse mode locking is demonstrated. This simple, compact, and high repetition rate source exhibits a low timing jitter of 18 fs [1 kHz, 10 MHz] and the lowest relative intensity noise of less than 0.003% [1 kHz, 10 MHz] observed from an Er-fiber laser.
Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.
Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.
We assess the scaling potential of high repetition rate, passively mode-locked erbium-doped soliton lasers. Our analysis focuses on three recently demonstrated lasers using saturable Bragg reflectors (SBR) as the mode-locking element. We use the soliton Area theorem to establish the limitations to increasing the repetition rate based on insufficient intracavity pulse energy, SBR properties, and dispersion engineering. Finally, we examine possible approaches to alleviate these limitations by changing the laser's structure and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.