A novel fluidized bed gasification reactor has been developed to get a product gas with a high calorific value (up to 15 MJ/Nm³) and nearly free of nitrogen. The gasification process is based on an internally circulating fluidized system and consists of a gasification zone fluidized with steam and a combustion zone fluidized with air. The circulating bed material acts as heat carrier from the combustion to the gasification zone. Gas mixing between these two zones is avoided by construction measures. Furtheron, the apparatus is characterized by a very compact design.The development of the gasification reactor has been carried out step by step. First, a cold flow model was operated to study the fluid mechanics of the fluidization system. The second step was a laboratory scale test rig to study the main features of the reactor by varying different operating and geometrical parameters. After this step a pilot plant was constructed and has been successfully operated. The results attained came fully up to the expectations.
The experiments described in this paper look to further transient electronic device development by exploring the fracturing capabilities of aluminum copper (II) oxide and aluminum bismuth (III) oxide nanothermites. In particular, a quick, inexpensive test was developed that was able to characterize the substrate fracturing capability of these selectively deposited energetic materials. Using this test, aluminum bismuth (III) oxide nanothermite with near stoichiometric composition was shown to be an effective mate-rial for fracturing silicon wafers of two different thicknesses for the configuration considered. Nanothermites were deposited at various equivalence ratios, resulting in a range of damage, which enables material preparation in a given practical application to be based on the desired level of resultant fracturing. This data was subsequently compared with thrust measurements and gas shock formation in an effort to correlate thrust production to the severity of fracturing produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.