Carotenoids are reported to have immunological effects independent of vitamin A activity. Although antioxidant activity has been suggested as a basis of action, the ability of carotenoids to autoxidize to numerous non-vitamin A products with immunological activity is an alternative yet to be fully explored. We have undertaken a systematic study of β-carotene autoxidation and tested the product mixture for immunological activity. Autoxidation proceeds predominantly by oxygen copolymerization, leading to a defined, reproducible product corresponding to net uptake of almost 8 molar equivalents of oxygen. The product, termed OxC-beta, empirical formula C40H60O15 versus C40H56 for β-carotene, contains more than 30% oxygen (w/w) and 85% β-carotene oxygen copolymers (w/w) as well as minor amounts of many C8−C18 norisoprenoid compounds. No vitamin A or higher molecular weight norisoprenoids are present. The predominance of polymeric products has not been reported previously. The polymer appears to be a less polymerized form of sporopollenin, a biopolymer found in exines of spores and pollen. Autoxidations of lycopene and canthaxanthin show a similar predominance of polymeric products. OxC-beta exhibits immunological activity in a PCR gene expression array, indicating that carotenoid oxidation produces non-vitamin A products with immunomodulatory potential.
We reported previously that the spontaneous oxidation of β-carotene and other carotenoids proceeds predominantly by formation of carotenoid-oxygen copolymers and that β-carotene copolymers exhibit immunological activity, including priming innate immune function and limiting inflammatory processes. Oxidative loss of carotenoids in fruits and vegetables occurs during processing. Here we report evidence for the occurrence of associated analogous copolymer compounds. Geronic acid, an indirect, low molecular weight marker of β-carotene oxidation at ∼2% of β-carotene copolymers, is found to occur in common fresh or dried foods, including carrots, tomatoes, sweet potatoes, paprika, rosehips, seaweeds, and alfalfa, at levels encompassing an approximately thousand-fold range, from low ng/g in fresh foods to μg/g in dried foods. Copolymers isolated from several dried foods reach mg/g levels: comparable to initial carotenoid levels. In vivo biological activity of supplemental β-carotene copolymers has been previously documented at μg/g levels, suggesting that some foods could have related activity.
In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.
Abstractβ-Carotene spontaneously copolymerizes with molecular oxygen to form a β-carotene-oxygen copolymer compound (“copolymer”) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene-oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunological activities, some of which derive from the copolymer. However, the copolymer’s chemical makeup is unknown. A chemical breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. Although the copolymer alone is only slightly affected by heating at 100°C for 4 h, in methanol solution it is significantly degraded by hydrochloric acid or sodium hydroxide, liberating many apocarotenoids. GC-MS analysis with mass-spectral library matching identified a minimum of 45 structures, while more than 90 others remain unassigned. Thirteen products are Generally Recognized as Safe (GRAS) human flavor agents. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are the dialdehydes glyoxal and methyl glyoxal, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration methyl glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given the copolymer occurs naturally and is a major product of non-enzymatic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals the copolymer may serve as a systemic source of apocarotenoids.
β-Carotene spontaneously copolymerizes with molecular oxygen to form a β-carotene-oxygen copolymer compound (“copolymer”) as the main product, together with small amounts of many apocarotenoids. Both the addition and scission products are interpreted as being formed during progression through successive free radical β-carotene-oxygen adduct intermediates. The product mixture from full oxidation of β-carotene, lacking both vitamin A and β-carotene, has immunological activities, some of which derive from the copolymer. However, the copolymer’s chemical makeup is unknown. A chemical breakdown study shows the compound to be moderately stable but nevertheless the latent source of many small apocarotenoids. GC-MS analysis with mass-spectral library matching identified a minimum of 45 structures, while more than 90 others remain unassigned. Newly identified products include various small keto carboxylic acids and dicarboxylic acids, several of which are central metabolic intermediates. Also present are glyoxal and methyl glyoxal dialdehydes, recently reported as β-carotene metabolites in plants. Although both compounds at higher concentrations are known to be toxic, at low concentration methyl glyoxal has been reported to be potentially capable of activating an immune response against microbial infection. In plants, advantage is taken of the electrophilic reactivity of specific apocarotenoids derived from β-carotene oxidation to activate protective defenses. Given the copolymer occurs naturally and is a major product of non-enzymatic β-carotene oxidation in stored plants, by partially sequestering apocarotenoid metabolites the copolymer may serve to limit potential toxicity and maintain low cellular apocarotenoid concentrations for signaling purposes. In animals the copolymer may serve as a systemic source of apocarotenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.