Many contemporary challenges in liquid chromatography - such as the need for “smarter” method development tools, and deeper understanding of chromatographic phenomena - could be addressed more efficiently and effectively with larger volumes of experimental retention data than we have been accustomed to historically. The paucity of publicly accessible, high-quality measurements has been due, at least in large part, to the high cost in time and resources associated with traditional retention measurement approaches. Recently we described an approach to improve the throughput of such measurements by using very short columns (typically 5 mm), while maintaining measurement accuracy. In this paper we present a perspective on the characteristics of results obtained using this approach using a dataset containing about 13,000 retention measurements, and describe an approach to sample introduction that improves upon the prior work. The dataset is comprised of results for 35 different small molecules, nine different stationary phases, and several mobile phase compositions for each analyte/phase combination. During the acquisition of these data, we have interspersed repeated measurements of a small number of compounds for quality control purposes. The data from these measurements not only enable detection of “out of control” measurements, but also assessment of the repeatability and reproducibility of retention measurements over time. For retention factors greater than 1, the mean relative standard deviation (RSD) of replicate (typically n=5) measurements is 0.4%, and the standard deviation of RSDs is 0.4%. Most differences between selectivity values measured six months apart for 15 non-ionogenic compounds were in the range of +/- 1%, indicating good reproducibility. A critically important observation from these analyses is that selectivity (defined here as retention of a given analyte relative to the retention of a reference compound; kx/kref) is a much more consistent measure of retention over time (months) compared to the retention factor alone. While this work and dataset also highlights the importance of stationary phase stability over time for achieving reliable retention measurements, we are nevertheless optimistic that this approach will enable the compilation of large databases (>> 10,000 measurements) of retention values over long time periods (years), which can in turn be leveraged to address some of the most important contemporary challenges in liquid chromatography. All of the data discussed in the manuscript are provided as Supplemental Information.
Many contemporary challenges in liquid chromatography - such as the need for “smarter” method development tools, and deeper understanding of chromatographic phenomena - could be addressed more efficiently and effectively with larger volumes of experimental retention data than are available. The paucity of publicly accessible, high-quality measurements needed for the development of retention models and simulation tools has largely been due to the high cost in time and resources associated with traditional retention measurement approaches. Recently we described an approach to improve the throughput of such measurements by using very short columns (typically 5 mm), while maintaining measurement accuracy. In this paper we present a perspective on the characteristics of a dataset containing about 13,000 retention measurements obtained using this approach, and describe a different sample introduction method that is better suited to this application than the approach we used in prior work. The dataset comprises results for 35 different small molecules, nine different stationary phases, and several mobile phase compositions for each analyte/phase combination. During the acquisition of these data, we have interspersed repeated measurements of a small number of compounds for quality control purposes. The data from these measurements not only enable detection of outliers but also assessment of the repeatability and reproducibility of retention measurements over time. For retention factors greater than 1, the mean relative standard deviation (RSD) of replicate (typically n=5) measurements is 0.4%, and the standard deviation of RSDs is 0.4%. Most differences between selectivity values measured six months apart for 15 non-ionogenic compounds were in the range of +/- 1%, indicating good reproducibility. A critically important observation from these analyses is that selectivity defined as retention of a given analyte relative to the retention of a reference compound (kx/kref) is a much more consistent measure of retention over a time span of months compared to the retention factor alone. While this work and dataset also highlight the importance of stationary phase stability over time for achieving reliable retention measurements, we are nevertheless optimistic that this approach will enable the compilation of large databases (>> 10,000 measurements) of retention values over long time periods (years), which can in turn be leveraged to address some of the most important contemporary challenges in liquid chromatography. All the data discussed in the manuscript are provided as Supplemental Information.
Efforts to model and simulate various aspects of liquid chromatography (LC) separations (e.g., retention, selectivity, peak capacity, injection breakthrough) depend on experimental retention measurements to use as the basis for the models and simulations. Often these modeling and simulation efforts are limited by datasets that are too small because of the cost (time and money) associated with making the measurements. Other groups have demonstrated improvements in throughput of LC separations by focusing on “overhead” associated with the instrument itself – for example, between-analysis software processing time, and autosampler motions. In this paper we explore the possibility of using columns with small volumes (i.e., 5 mm x 2.1 mm i.d.) compared to conventional columns (e.g., 100 mm x 2.1 mm i.d.) that are typically used for retention measurements. We find that isocratic retention factors calculated for columns with these dimensions are different by about 20%; we attribute this difference – which we interpret as an error in measurements based on data from the 5 mm column – to extra-column volume associated with inlet and outlet frits. Since retention factor is a thermodynamic property of the mobile/stationary phase system under study, it should be independent of the dimensions of the column that is used for the measurement. We propose using ratios of retention factors (i.e., selectivities) to translate retention measurements between columns of different dimensions, so that measurements made using small columns can be used to make predictions for separations that involve conventional columns. We find that this approach reduces the difference in retention factors (5 mm compared to 100 mm columns) from an average of 18% to an average of less than 1%. This approach will significantly increase the rate at which high quality retention data can be collected to thousands of measurements per instrument per day, which in turn will likely have a profound impact on the quality of models and simulations that can be developed for many aspects of LC separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.