The imbalance of matter and antimatter in our Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM). We present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intramolecular electric field, and evolving coherently for up to 3 seconds. Our result is consistent with zero and improves on the previous best upper bound by a factor of ~2.4. Our results provide constraints on broad classes of new physics above
10
13
electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades.
The evolution of chain transfer agents (CTAs) was studied for the polymerization of styrene by reverse iodine transfer polymerization (RITP). CTAs are formed during an inhibition period where the radical initiator reacts with molecular iondine. These compounds were studied using in situ 1 H nuclear magnetic resonance (NMR) experiments. The molecular weight of polystyrene was evaluated with size exclusion chromatography (SEC) and 1 H NMR. Structural analysis of the resulting polymers was done using 1 H NMR spectroscopy and matrix-assisted laser desorption/ionization time-offlight (MALDI−ToF) mass spectrometry. The inhibition period of styrene polymerized by RITP was much shorter than expected. This is due to the consumption of iodine in the reaction between styrene and iodine which reversibly forms 1,2-diiodoethylbenzene leading to the subsequent formation of 1-phenylethyl iodide (1-PEI). For the first time the formation of 1,2-diiodoethylbenzene as an intermediate structure in RITP of styrene has been proven experimentally. The active role of 1-PEI in the polymerization process is documented through the detection of phenylethyl end groups by MALDI−ToF and 1 H NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.