Registration for Praktek Kerja Lapangan (PKL) in the Administration Business department has not been maximized. Some of the problems that occur include student registration which is still semi-manual so that it prolongs the registration process, one company only have three students for each Study Program so that students have to fight, this makes it difficult for the admin, manual PKL registration makes students have to queue in the administration room. The development of an information system with the HMVC pattern is able to make easier for programmers. Programmer can divide the system into more specific modules so that the execution of applications is more flexible. This research purpose to develop a registration information system for Praktek Kerja Lapangan (PKL) by applying the HMVC (Hierarchical Model View Controller) concept. The test results of the three experts show that all features of the PKL registration information system are running and functioning properly. And then, stress testing with Jmeter also showed satisfactory results, using 42 users / samples the average response time was less than 5 seconds and there were no errors.
The rapid development of information technology is marked by the number of computer users for business purposes. An online shop is the activity of purchasing goods or services through the internet so that sellers and buyers do not meet in person. In this case, Customer Service is needed to serve prospective buyers. The online shop used in the case study is batik which sells batik products typical of Malang. In this study, the Virtual Customer Service prototype through the A.L.I.C.E (Artificial Internet Linguistic Computer Agency) knowledge base is a chatbot application that is currently being developed. A.L.I.C.E Chatbot knowledge base is based on AIML (Artifical Intelligence Markup Language). Conversations between prospective buyers and Virtual CustomerService with the aim that if the answers in the database are not found, it will add new knowledge by looking for information relevant to questions on the website. Prospective buyers can easily ask directly about the information on the online shop. With the use of chatbots that are equipped with artificial intelligence, it makes it easier for users to get information from a database that is informed to prospective buyers quickly with accurate answers to about 87% of questions and relevant answers.
Penelitian ini bertujuan untuk menghitung emisi gas buang yang dihasilkan dari aktifitas pelayaran kapal yang berada di perairan Batam-Singapore menggunakan data AIS (Automatic Identification System). Wilayah ini merupakan salah satu wilayah perairan dengan aktifitas pelayaran terpadat sepanjang selat Malaka. Hasil analisa menunjukkan jumlah rata-rata kapal per-jam pada 4 September 2018 sebanyak 1191 kapal dengan kepadatan tertinggi terjadi pada pukul 22.00 dengan jumlah 1326 kapal. Hasil perhitungan emisi pada jam tersebut menunjukkan jumlah emisi NOx, CO, CO2, VOC, SOx and PM masing-masing sebesar 48,716.48 kg/hour, 62,297.39 kg/hour, 3,541,656.53 kg/hour, 14,751.79 kg/hour, 1,339.14 kg/hour and 22,319.03 kg/hour. Hasil ini merupakan updating nilai emisi dari penelitian-penelitian sebelumnya yang menggunakan data AIS perjam pada tahun 2011 dan 2014. Hasil perbandingan menunjukkan perbedaan cukup signifikan terhadap nilai emisi CO2
Penggunaan handphone merupakan salah satu penyebab kecelakaan lalu lintas. Hal ini sangat memprihatinkan mengingat penggunaan handphone merupakan salah satu aktivitas manusia yang saat ini sering dilakukan. Penelitian ini berusaha memberikan solusi untuk mengurangi penyebab kecelakaan lalu lintas yang disebabkan penggunaan handphone saat sedang berkendara dengan cara memanfaatkan sensor accelerometer yang terdapat pada smartphone. Data pada sensor accelerometer diklasifikasikan dengan menggunakan algoritma K-Nearest Neighboar untuk mengetahui apakah pengguna handphone sedang berkendara atau sedang tidak berkendara. Penelitian ini juga membuat aplikasi auto feedback yang dapat membalas pesan secara otomatis apabila pengguna smartphone sedang berkendara sehingga diharapkan dapat menciptakan kondisi berkendara yang aman. Dalam rangka mengetahui ketepatan algoritma dalam mengklasifikasikan aktivitas berkendara, maka dilakukan pengujian pada aplikasi auto feedback dengan cara mengirimkan beberapa pesan saat pengguna handphone sedang berkendara dan saat sedang tidak berkendara.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.