Unemployment is caused by the work force or job seekers are not proportional with the number of existing jobs. Unemployment is often a problem in the interconnected economy due to unemployment, productivity and income will be reduced. The number of unemployed in an are a expected to be affected by unemployment in the surrounding area. This is made possible because of the proximity factor or adjacency between regions, it is estimated that there are linkages to the regional unemployment rate. To determine the relationship between regional linkages used Moran's Index method. The number of unemployed in Central Java, obtained Moran's Index value = 0.0614. Moran's Index values in the range 0 < I ≤ 1 indicating the presence of spatial autocorrelation is positive but small correlation can be said because of near zero, orit can be concluded that the similarity between the district does not have a value or indicate that unemployment among districts in Central Java has a small correlation.
A lot of events occured in daily life are connected with survival time, for example a time interval that measure the failure of a product, time duration which is needed to recover from disease, the back pain recurred after treatment. Data about survival time duration of an event is called survival data. Survival data can not be observed completely that is called as sensored data. Cox proportional hazard model is employed to analyze and determine the survival rate from cencored data affected one or more explanatory variables. This model assummed that the hazard rate of group is proportional to the hazard rate of another group. In the paper, wants to the factor that affect the survival of patient with cervical cancer. From the result of data processing that affect are age and stadum with cox proportionl hazard model isKeywords : Cox Proportional Hazard, Survival Rate, Hazard Rate, Cervical Cancer PendahuluanAnalisis survival/analisis data ketahanan hidup adalah suatu metode yang berhubungan dengan waktu, mulai dari awal pengamatan sampai terjadinya kejadian khusus. Analisis survival memerlukan data yang merupakan waktu ketahanan dari suatu individu. Di bidang kesehatan data ini diperoleh dari suatu pengamatan terhadap sekelompok atau beberapa kelompok individu yang diamati waktu terjadinya kegagalan dari setiap individu [4] . Kegagalan yang dimaksud antara lain adalah kematian karena penyakit tertentu, kambuhnya suatu penyakit atau munculnya penyakit baru.Ada beberapa teori yang pernah membahas tentang survival analysis diantaranya adalah Kaplan-meier dan Cox. Model regresi cox proportional hazard dapat menjelaskan pengaruh faktor independen dalam suatu kejadian. Pada penelitian ini, ingin diketahui faktor-faktor yang mempengaruhi ketahanan hidup penderita kanker leher rahim. Populasi dalam penelitian ini adalah semua penderita kanker leher rahim yang pernah menjalani perawatan di rumah sakit Dr. Cipto Mangunkusumo Jakarta periode Januari 1997 sampai dengan September 2002, sedangkan sampel yang diambil adalah penderita kanker leher rahim yang bertempat tinggal di Jakarta. 80 orang. Data diperoleh dari data rekam medik rumah sakit. Sumber: Ketahanan Hidup Penderita Kanker Serviks di Rumah Sakit Dr. Cipto Mangunkusumo Jakarta. Indones J. Obstet Gynecol 21(3): 182-190 [12] . Permasalah dibatasi pada pembentukan model regresi cox proportional hazard dengan faktor-faktor yang mempengaruhi ketahanan hidup pasien penderita kanker leher rahim. Data yang digunakan untuk aplikasi kasus bersumber dari data ketahanan hidup penderita kanker leher rahim dengan penyensoran tipe III. Penaksiri parameternya menggunakan metode Maximum Likelihood Estimation (MLE). Pengolahan datanya menggunakan software statistik SPSS 16.
Survival data is the length of time until an event occurs. If the survival time is affected by other factor, it can be modeled with a regression model. The regression model for survival data is commonly based on the Cox proportional hazard model. In the Cox proportional hazard model, the covariate effect act multiplicatively on unknown baseline hazard. Alternative to the multiplicative hazard model is the additive hazard model. One of the additive hazard models is the semiparametric additive hazard model that introduced by Lin Ying in 1994. The regression coefficient estimates in this model mimic the scoring equation in the Cox model. Score equation of Cox model is the derivative of the Partial Likelihood and methods to maximize partial likelihood with Newton Raphson iterasi. Subject from this paper is describe the multiplicative and additive hazard model that applied to the duration of the birth process. The data is obtained from two different clinics,there are clinic that applies gentlebirth method while the other one no gentlebirth. From the data processing obtained the factors that affect on the duration of the birth process are baby’s weight, baby’s height and method of birth. Keywords: survival, additive hazard model, cox proportional hazard, partial likelihood, gentlebirth, duration
Preeclampsia is a spesific pregnancy disease in which hypertency and proteinuria occurs after 20 weeks of pregnancy. Classification Trees is a statistical method that can be used to identify potency of expectant women suffering from preeclampsia. This research aim to predict the risk of preeclampsia based on some individual variables. They are parity, work status, history of hypertension of preeclampsia, body mass index, education and income. To improve the stability and accuracy of the prediction were used the Bootstrap Aggregating Classification Trees method. By the method, classification accuracy reach to 86%.
Credit is the greatest asset managed the bank and also the most dominant contributor to the bank's revenue. Debtors to pay their credit to the bank may smoothly or jammed. This study aims to identify the variables that affect a debtor's credit status and compare the acuration of classification method both classification and regression trees (CART) and logistic regression. The variables used were debtor's gender, education level, occupation, marital status, and income. By using logistic regression, it was known that only the debtor's income effect their credit status with the classification accuration reach into 80%. By using CART, there were some variables affect the credit status and the classification accuration 80,9%. This paper showed that the performance of CART in classifying the credit status of debtors was better than logistic regression.Keywords: Credit Status, Logistic Regression, CART PendahuluanBank menurut Undang-undang RI nomor 10 tahun 1998 tanggal 10 November 1998 tentang perbankan adalah Badan usaha yang menghimpun dana dari masyarakat dalam bentuk simpanan dan menyalurkan kepada masyarakat dalam bentuk kredit dan atau bentuk-bentuk lainnya dalam rangka meningkatkan taraf hidup rakyat banyak. Bank merupakan perusahaan yang bergerak dalam bidang keuangan, artinya usaha perbankan selalu berkaitan dengan masalah di bidang keuangan. Kegiatan menghimpun dan menyalurkan dana merupakan kegiatan pokok perbankan, sedangkan kegiatan memberikan jasa-jasa bank hanyalah merupakan kegiatan pendukung. Fungsi utama bank dalam suatu perekonomian adalah untuk memobilisasi dana masyarakat, secara tepat dan cepat menyalurkan dana tersebut kepada pengguna atau investasi yang efektif dan efisien [4] . Penerapan prinsip kehati-hatian oleh bank diantaranya diimplementasikan melalui kemampuan bank untuk mengelola portofolio kredit yang dimiliki sehingga resiko yang berpotensi untuk terjadi (credit risk) dapat diukur dan dikontrol. Kredit merupakan asset yang paling besar yang dikelola bank dan juga merupakan konstributor yang paling dominan terhadap pendapatan bank. Model skor kredit merupakan alat bantu dalam melakukan analisa kelayakan kredit berguna sebagai langkah awal dalam mengurangi resiko terjadinya kegagalan pemenuhan kewajiban oleh debitur. Credit scoring (skor kredit) adalah metode yang digunakan untuk mengevaluasi resiko kredit dalam hal permohonan pinjaman dari konsumen [6] . Metode klasifikasi dapat dilakukan dengan pendekatan parametrik dan nonparametrik. Dalam pendekatan parametrik terdapat beberapa metode klasifikasi, salah satunya adalah analisis regresi logistik. Menurut Hosmer dan Lemeshow, metode regresi logistik adalah suatu metode analisis statistika yang mendeskripsikan hubungan antara variabel respon yang memiliki dua kategori atau lebih dengan satu atau lebih variabel penjelas berskala kategori atau interval [3] .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.