Molybdenum disulphide is a layered transition metal dichalcogenide that has recently raised considerable interest due to its unique semiconducting and opto-electronic properties. Although several theoretical studies have suggested an electronic phase transition in molybdenum disulphide, there has been a lack of experimental evidence. Here we report comprehensive studies on the pressure-dependent electronic, vibrational, optical and structural properties of multilayered molybdenum disulphide up to 35 GPa. Our experimental results reveal a structural lattice distortion followed by an electronic transition from a semiconducting to metallic state at B19 GPa, which is confirmed by ab initio calculations. The metallization arises from the overlap of the valance and conduction bands owing to sulphur-sulphur interactions as the interlayer spacing reduces. The electronic transition affords modulation of the opto-electronic gain in molybdenum disulphide. This pressuretuned behaviour can enable the development of novel devices with multiple phenomena involving the strong coupling of the mechanical, electrical and optical properties of layered nanomaterials.
Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.
Abstract.The sensitive dependence of electronic and thermoelectric properties of MoS 2 on the applied strain opens up a variety of applications in the emerging area of straintronics. Using first principles based density functional theory calculations, we show that the band gap of few layers of MoS 2 can be tuned by applying i) normal compressive (NC), ii) biaxial compressive (BC), and iii) biaxial tensile (BT) strain. A reversible semiconductor to metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which S-M transition occurs increases with increasing number of layers and becomes maximum for the bulk. On the other hand, the threshold strain for S-M transition in both BC and BT strain decreases with the increase in number of layers. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of strain type and number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of number of layers and applied strain. 3L-and 2L-MoS 2 emerge as the most efficient thermoelectric material under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison between the feasibility of these three types of strain is also discussed. arXiv:1407.7522v1 [cond-mat.mtrl-sci] 29 Jul 2014Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS 2 2
We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κ<sub>InSe</sub> < κ<sub>GaSe</sub> < κ<sub>GaS</sub>. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~ 2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.
We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (σ) and large thermopower leading to a high power factor (S2σ) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (vg). Consequently, lowering the lattice thermal conductivity (κlatt) below 2 W/m K. Low κlatt combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZTmax of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.