Twitter merupakan salah satu media sosial yang banyak digunakan oleh masyarakat sebagai media komunikasi dan memperoleh informasi. Melalui media sosial ini, pengguna dapat menyampaikan berbagai macam opini maupun komentar terhadap suatu isu. Opini dan komentar yang pengguna sampaikan melalui tweets yang ditulisnya pun dapat digunakan untuk analisis sentimen. Maka dari itu, dalam penelitian ini dilakukan analisis sentimen terhadap tweets yang berhubungan dengan Universitas Muhammadiyah Malang (UMM) untuk mengetahui opini masyarakat mengenai kampus ini. Analisis dilakukan dengan mengklasifikasikan tweets yang berisi sentimen masyarakat mengenai UMM. Metode klasifikasi yang digunakan dalam penelitian ini adalah Naïve Bayes dan Support Vector Machine (SVM) dengan pembobotan menggunakan TF-IDF. Hasil komparasi kedua metode menunjukkan bahwa Naïve Bayes mendapatkan hasil akurasi yang lebih baik dari SVM dengan akurasi sebesar 73,65%.
Support Vector Machine (SVM) is one of the most widely used classification algorithms for sentiment analysis and has been shown to provide satisfactory performance. However, despite its advantages, the SVM algorithm still has weaknesses in selecting the right SVM parameters to optimize the performance. In this study, sentiment analysis was done with the use of data called tweets about Undang-Undang Cipta Kerja which reap many pros and cons by the people in Indonesia, especially the laborers. The classification method used in this study is the Support Vector Machine algorithm which is optimized using the Particle Swarm Optimization method for the SVM parameters selection in the hope of optimizing the performance generated by the SVM algorithm in sentiment analysis. The results of the study using 10 k-fold cross-validations using the SVM algorithm resulted in an accuracy of 92,99%, a precision of 93,24%, and a recall of 93%. Meanwhile, the SVM and PSO algorithms produce an accuracy of 95%, precision of 95,08%, and recall of 94,97%. The results show that the Particle Swarm Optimization method can overcome the weaknesses of the Support Vector Machine algorithm in the problem of parameter selection and has succeeded in improving the resulting performance where the SVM-PSO is more superior to SVM without optimization in sentiment analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.