Reliabilities for genomic estimated breeding values (GEBV) were investigated by simulation for a typical dairy cattle breeding setting. Scenarios were simulated with different heritabilites (h2) and for different haplotype sizes, and seven generations with only genotypes were generated to investigate reliability of GEBV over time. A genome with 5000 single nucleotide polymorphisms (SNP) at distances of 0.1 cM and 50 quantitative trait loci (QTL) was simulated, and a Bayesian variable selection model was implemented to predict GEBV. Highest reliabilities were obtained for 10 SNP haplotypes. At optimal haplotype size, reliabilities in generation 1 without phenotypes ranged from 0.80 for h2 = 0.02 to 0.93 for h2 = 0.30, and in the seventh generation without phenotypes ranged from 0.69 for h2 = 0.02 to 0.86 for h2 = 0.30. Reliabilities of GEBV were found sufficiently high to implement dairy selection schemes without progeny testing in which case a data time-lag of two to three generations may be present. Reliabilities were also relatively high for low heritable traits, implying that genomic selection could be especially beneficial to improve the selection on, e.g. health and fertility.
Breeding values for animals with marker data are estimated using a genomic selection approach where data is analyzed using Bayesian multi-marker association models. Fourteen model scenarios with varying haplotype lengths, hyper parameter and prior distributions were compared to find the scenario expected to give the most correct genomic estimated breeding values for animals with marker information only. Five-fold cross validation was performed to assess the ability of models to estimate breeding values for animals in generation 3. In each of the five subsets, 20% of phenotypic records in generation 3 were left out. Correlations between breeding values estimated on full data and on subsets for the "leave-out" animals varied between 0.77–0.99. Regression coefficients of breeding values from full data on breeding values from subsets ranged from 0.78–1.01. Single-SNP marker models didn't perform well. Correlations were 0.77–0.89 and predicted breeding values were biased. In addition the models seemed to over fit the genomic part of the variation. Highest correlations and most unbiased results were obtained when SNP markers were joined into haplotypes. Especially the scenarios with 5-SNP haplotypes gave promising results (distance between adjacent SNPs is 0.1 cM evenly over the genome). All correlations were 0.99 and regression coefficients were 0.99–1.01. Models with 5-SNP markers seemed robust to hyper parameter and prior changes. Haplotypes up to 40 SNPs also gave good results. However, longer haplotypes are expected to have less predictive ability over several generations and therefore the 5-SNP haplotypes are expected to give the best predictions for generations 4–6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.