A traditional Type 3 Basmati rice cultivar grown in India is tall and lodges even under low nitrogen fertilizer dose. In addition to lodging, it is highly susceptible to several diseases and pests including bacterial blight (BB). BB resistance genes (Xa21 and xa13) and a semidwarfing gene (sd-1) were pyramided in Type 3 Basmati from a rice cultivar PR106-P2 using marker-assisted selection (MAS). Foreground selection for BB resistance genes, Xa21 and xa13 and reduced plant height gene, sd-1 was carried on the basis of linked molecular markers pTA248, RG136 and 'h', respectively. The BC 2 F 3 progenies with both the BB resistance genes were highly resistant with lower lesion length than either of the genes individually. Background profiling of the selected 16 BC 2 F 3 progenies was done using 95 anchored SSR and 12 ISSR markers. Among the selected 16 BC 2 F 3 progenies, 38-5-2 and 38-5-36 closely clustered along with the recipient parent Type 3 Basmati showing above 85% genetic similarity with the same. Further selection was continued till F 5 generation for higher recovery for Type 3 Basmati characteristics. The desirable alleles of intermediate amylose content (wx) and aroma (fgr) loci of Type 3 Basmati were also tracked using the linked SSR markers. The BC 2 F 5 pyramid lines T3-4, T3-5, T3-6 and T3-7 homozygous for the three target genes Xa21, xa13 and sd-1 from the donor parent with wx and fgr alleles of Type 3 Basmati had excellent cooking quality and strong aroma.
The genetic fidelity of in vitro-raised gerbera clones was assessed by using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Out of 35 RAPD and 32 ISSR primers screened, only 12 RAPD and 10 ISSR primers produced clear, reproducible and scorable bands. The 12 RAPD primers produced 54 distinct and scorable bands, with an average of 4.5 bands per primer. The number of scorable bands for ISSR primers varied from 3 (ISSR-14) to 9 (ISSR-07), with an average of 5.5 bands per primer. The number of bands generated per primer was greater in ISSR than RAPD. All banding profiles from micropropagated plants were monomorphic and similar to those of the mother plant. A similarity matrix based on Jaccard's coefficient revealed that the pair-wise value between the mother and the in vitro-raised plantlets was 1, indicating 100% similarity. This confirmed the true-to-type nature of the in vitro-raised clones.
Seventy genotypes belonging to 7 wild and cultivated Vigna species were genetically differentiated using randomly amplified polymorphic DNA (RAPD), universal rice primer (URP) and simple sequence repeat (SSR) markers. We identified RAPD marker, OPG13 which produced a species-specific fingerprint profile. This primer characterized all the Vigna species uniquely suggesting an insight for their co-evolution, domestication and interspecific relationship. The cluster analysis of combined data set of all the markers resulted in five major groups. Most of the genotypes belonging to cultivated species formed a specific group whereas all the wild species formed a separate cluster using unweighted paired group method with arithmetic averages and principle component analysis. The Mantel matrix correspondence test resulted in a high matrix correlation with best fit (r = 0.95) from combined marker data. Comparison of three-marker systems showed that SSR marker was more efficient in detecting genetic variability among all the Vigna species. The narrow genetic base of the V. radiata cultivars obtained in the present study emphasized that large germplasm collection should be used in Vigna improvement programme.
Red rot, caused by Colletotrichum falcatum, is the most significant problem of sugarcane worldwide. Pathological studies and three different marker systems were used to characterize 25 C. falcatum isolates collected from 18 subtropical sugarcane cultivars from 15 different sugarcane-growing regions of three north-eastern states of India to assess pathogen diversity. Of these 25 isolates, three were new (RR2A, RR15, RR83) from cultivars Co 7717, Co J83 and Co S88230, respectively, pathologically characterized on 13 standard differential hosts. Isolates Cf 01, Cf 08 and RR15 were the most, and Cf-07 the least virulent. Molecular characterization using random amplified polymorphic DNA, universal rice primers (URP) and inter simple sequence repeat markers amplified a total of 161 alleles of which 159 were polymorphic (98.76%). Unweighted paired group method with arithmetic averages analysis of combined data of all the DNA markers obtained by three marker systems classified 25 isolates into six clusters at 34% genetic similarity with high Mantel matrix correlation (r = 0.83). The principal component analysis (PCA) of marker data explained 68% of the variation by first three components. Molecular diversity as revealed in these isolates is very high, but non-structured. Isolate Co Pant 84212 was found to be genetically most diverse. We demonstrated for the first time that URPs derived from weed rice could successfully assess genetic diversity in C. falcatum. Molecular characterization of the C. falcatum isolates prevalent in north-eastern India would enable red rot management strategies, selection for resistance genes and development of resistant cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.