Abstract. The source and sinks of carbon dioxide (CO 2 ) and methane (CH 4 ) due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO 2 inversions, the net biospheric CO 2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr −1 during [2007][2008]. Based on the bottom-up approach, the net biospheric CO 2 flux is estimated to be −191 ± 193 Tg C yr −1 during the period of 2000-2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr −1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr −1 , which resulted from a sink of −16 Tg C yr −1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr −1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr −1 ; and (4) the net CO 2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr −1 . Including the emissions from the combustion of fossil fuels of 444 Tg C yr −1 for the 2000s, we estimate a net CO 2 landatmosphere flux of 297 Tg C yr −1 . In addition to CO 2 , a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH 4 . Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C-CH 4 yr −1 were released to atmosphere from South Asia during the 2000s. Taking all CO 2 and CH 4 fluxes together, our best estimate of the net land-atmosphere CO 2 -equivalent flux is a net source of 334 Tg C yr −1 for the South Asian region during the 2000s. If CH 4 emissions are weighted by radiative forcing of molecular CH 4 , the total CO 2 -equivalent flux increases to 1148 Tg C yr −1 suggesting there is great potential of reducing CH 4 emissions for stabilizing greenhouse gases concentrations.
The source and sinks of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) due to anthropogenic and natural biospheric activities were estimated for the South Asia region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO<sub>2</sub> inversions, the net biospheric CO<sub>2</sub> flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr<sup>−1</sup> during 2007–2008. Based on the bottom-up approach, the net biospheric CO<sub>2</sub> flux is estimated to be −191 ± 193 Tg C yr<sup>−1</sup> during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr<sup>−1</sup> (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr<sup>−1</sup>, which resulted from a sink of −16 Tg C yr<sup>−1</sup> due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr<sup>−1</sup> due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr<sup>−1</sup>; and (4) the net CO<sub>2</sub> emission due to biomass burning of +44.1 ± 13.7 Tg C yr<sup>−1</sup>. Including the emissions from the combustion of fossil fuels of 444 Tg C yr<sup>−1</sup> for the decades of 2000s, we estimate a net CO<sub>2</sub> land-to-atmosphere flux of 297 Tg C yr<sup>−1</sup>. In addition to CO<sub>2</sub>, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH<sub>4</sub>. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C-CH<sub>4</sub> yr<sup>−1</sup> were released to atmosphere from South Asia during the 2000s. Taking all CO<sub>2</sub> and CH<sub>4</sub> fluxes together, our best estimate of the net land-to-atmosphere CO<sub>2</sub>-equivalent flux is a net source of 334 Tg C yr<sup>−1</sup> for the South Asia region during the 2000s. If CH<sub>4</sub> emissions are weighted by radiative forcing of molecular CH<sub>4</sub>, the total CO<sub>2</sub>-equivalent flux increases to 1148 Tg C yr<sup>−1</sup> suggesting there is great potential of reducing CH<sub>4</sub> emissions for stabilizing greenhouse g...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.