Resistivity and magnetostriction measurements were performed at high magnetic fields and under pressure on UCoAl. At ambient pressure, the 1st order metamagnetic transition at H_m ~ 0.7 T from the paramagnetic ground state to the field-induced ferromagnetic state changes to a crossover at finite temperature T_0 ~11 K. With increasing pressure, H_m linearly increases, while T_0 decreases and is suppressed at the quantum critical endpoint (QCEP, P_QCEP ~ 1.5 GPa, H_m ~ 7 T). At higher pressure, the value of H_m identified as a crossover continuously increases, while a new anomaly appears above P_QCEP at higher field H* in resistivity measurements. The field dependence of the effective mass (m*) obtained by resistivity and specific heat measurements exhibits a step-like drop at H_m at ambient pressure. With increasing pressure, it gradually changes into a peak structure and a sharp enhancement of m* is observed near the QCEP. Above P_QCEP, the enhancement of m* is reduced, and a broad plateau is found between H_m and H*. We compare our results on UCoAl with those of the ferromagnetic superconductor UGe2 and the itinerant metamagnetic ruthenate Sr3Ru2O7.Comment: 10 pages, 14 figures, accepted for publication in J. Phys. Soc. Jp
Resistivity measurements were performed for the itinerant Ising-type ferromagnet URhAl at temperatures down to 40 mK under high pressure up to 7.5 GPa, using single crystals. We found that the critical pressure of the Curie temperature exists at around Pc ∼ 5.2 GPa. Near Pc, the A-coefficient of the AT 2 Fermi-liquid resistivity term below T * is largely enhanced with a maximum around 5.2-5.5 GPa. Above Pc, the exponent of the resistivity ρ(T ) deviates from 2. At Pc, it is close to n = 5/3, which is expected by the theory of threedimensional ferromagnetic spin fluctuations for a 2nd-order quantum-critical point (QCP). However, TC(P ) disappears as a 1st-order phase transition, and the critical behavior of resistivity in URhAl cannot be explained by the theory of a 2nd-order QCP. The 1st-order nature of the phase transition is weak, and the critical behavior is still dominated by the spin fluctuation at low temperature. With increasing pressure, the non-Fermi-liquid behavior is observed in higher fields. Magnetic field studies point out a ferromagnetic wing structure with a tricritical point (TCP) at ∼ 4.8-4.9 GPa in URhAl. One open possibility is that the switch from the ferromagnetic to the paramagnetic states does not occur simply but an intermediate state arises below the TCP as suggested theoretically recently. Quite generally, if a drastic Fermi-surface change occurs through Pc, the nature of the interaction itself may change and lead to the observed unconventional behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.