In recent years the study of the intrinsic brain dynamics in a relaxed awake state in the absence of any specific task has gained increasing attention, as spontaneous neural activity has been found to be highly structured at a large scale. This so called resting-state activity has been found to be comprised by nonrandom spatiotemporal patterns and fluctuations, and several Resting-State Networks (RSN) have been found in BOLD-fMRI as well as in MEG signal power envelope correlations. The underlying anatomical connectivity structure between areas of the brain has been identified as being a key to the observed functional network connectivity, but the mechanisms behind this are still underdetermined. Theoretical large-scale brain models for fMRI data have corroborated the importance of the connectome in shaping network dynamics, while the importance of delays and noise differ between studies and depend on the models' specific dynamics. In the current study, we present a spiking neuron network model that is able to produce noisy, distributed alpha-oscillations, matching the power peak in the spectrum of group resting-state MEG recordings. We studied how well the model captured the inter-node correlation structure of the alpha-band power envelopes for different delays between brain areas, and found that the model performs best for propagation delays inside the physiological range (5-10 m/s). Delays also shift the transition from noisy to bursting oscillations to higher global coupling values in the model. Thus, in contrast to the asynchronous fMRI state, delays are important to consider in the presence of oscillation.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT AbstractWith the increasing availability of advanced imaging technologies, we are entering a new era of neuroscience. Detailed descriptions of the complex brain network enable us to map out a structural connectome, characterize it with graph theoretical methods, and compare it to the functional networks with increasing detail. To link these two aspects and understand how dynamics and structure interact to form functional brain networks in task and in the resting state, we use theoretical models. The advantage of using theoretical models is that by recreating functional connectivity and time series explicitly from structure and pre-defined dynamics, we can extract critical mechanisms by linking structure and function in ways not directly accessible in the real brain. Recently, resting state models with varying local dynamics have reproduced empirical functional connectivity patterns, and given support to the view that the brain works at a critical point at the edge of a bifurcation of the system. Here, we present an overview of a modeling approach of the resting brain network and give an application of a neural mass model in the study of complexity changes in aging.-----
Abstract. The “digit span backwards” (DSB) is the most commonly used test in clinical neuropsychology to assess working memory capacity. Yet, it remains unclear how the task is solved cognitively. The present study was conducted to examine the use of visual and verbal cognitive strategies in the DSB. Further, the relationship between the DSB and a complex span task, based on the Simultaneous Storage and Processing task ( Oberauer et al., 2003 ), was investigated. Visualizers performed better than verbalizers in the dual task condition (rPB = .23) only when the relevant digits were presented optically. Performance in the DSB correlated only weakly with the complex span task in all conditions (all τ ≤ .21). The results indicate that the processing modality is determined by the preference for a cognitive strategy rather than the presentation modality and suggest that the DSB measures different working aspects than commonly used experimental working memory tasks.
The Stroop effect is one of the most famous examples of interference in human perception. The present study demonstrates that a position Stroop paradigm, comparable to the classical color-word interference paradigm, resulted in the same pattern of interference for the spatial dimension; however, the interference was significantly weaker. By exchanging the original oral response for a manual response in the spatial paradigm, we showed that the verbal component is crucial for the Stroop effect: Manual responses lead to a disappearance of the interference effect. Moreover, with manual responses word position was recognized at the same speed for the baseline condition and for words that were incongruent as well as congruent with the spatial position. The results indicate (1) that the Stoop effect depends heavily on verbal components and (2) that differing processing speeds between reading and position recognition do not serve as a proper explanation for the effect. In addition, the provided paradigm plausibly transfers the classical color-word interference to the spatial dimension.
Background Mental disorders are prevalent and cause considerable burden of disease. Exercise has been shown to be efficacious to treat major depressive disorders, insomnia, panic disorder with and without agoraphobia and post traumatic stress disorder (PTSD). Methods This pragmatic, two arm, multi-site randomised controlled trial will evaluate the efficacy and cost-effectiveness of the manualized, group-based six-months exercise intervention “ImPuls”, among physically inactive patients with major depressive disorders, insomnia, panic disorder, agoraphobia and PTSD within a naturalistic outpatient context in Germany. A minimum of 375 eligible outpatients from 10 different study sites will be block-randomized to either ImPuls in addition to treatment as usual (TAU) or TAU only. ImPuls will be conducted by trained exercise therapists and delivered in groups of six patients. The program will combine (a) moderate to vigorous aerobic exercise carried out two-three times a week for at least 30 min with (b) behavior change techniques for sustained exercise behavior change. All outcomes will be assessed pre-treatment, post-treatment (six months after randomization) and at follow-up (12 months after randomization). Primary outcome will be self-reported global symptom severity assessed with the Brief Symptom Inventory (BSI-18). Secondary outcomes will be accelerometry-based moderate to vigorous physical activity, self-reported exercise, disorder-specific symptoms, quality-adjusted life years (QALY) and healthcare costs. Intention-to-treat analyses will be conducted using mixed models. Cost-effectiveness and cost-utility analysis will be conducted using incremental cost-effectiveness and cost-utility ratios. Discussion Despite its promising therapeutic effects, exercise programs are currently not provided within the outpatient mental health care system in Germany. This trial will inform service providers and policy makers about the efficacy and cost-effectiveness of the group-based exercise intervention ImPuls within a naturalistic outpatient health care setting. Group-based exercise interventions might provide an option to close the treatment gap within outpatient mental health care settings. Trial registration The study was registered in the German Clinical Trials Register (ID: DRKS00024152, 05/02/2021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.