Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular "mineralized" waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilotscale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test, 10), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR sm Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.
EXECUTIVE SUMMARYTwo samples of fluidized-bed steam reforming (FBSR) mineral waste form product were subjected to single-pass flow-through (SPFT) testing. Sample LAW 1123 resulted from pilot-scale FBSR processing with a Hanford Envelope A low-activity waste (LAW) simulant. Sample SBW 1173 resulted from pilot-scale FBSR processing with an Idaho National Laboratory (INL) simulant commonly referred to as sodium-bearing waste (SBW). The pilot-scale waste forms were made at the Science and Technology Applications Research (STAR) facility in Idaho Falls, Idaho. The durability of the two FBSR waste forms was assessed via the SPFT test in this study. Both samples were multiphase mineral waste forms, so the SPFT test results provide an overall release rate from the multiple mineral species in each sample and are dependent on the amount of each phase present and the mineralogy of the phases present. SPFT testing was performed at temperatures of 25°, 40°, 70°, and 90°C on LAW 1123, while SBW 1173 was only tested at 70° and 90°C. The 70° and 90°C data were compared to each other and the LAW-1123 results were compared to previous testing performed by the Pacific Northwest National Laboratory (PNNL) on a LAW Envelope C (high organic content) waste simulant.The objectives of this study were to obtain forward dissolution rate data for both STAR FBSR bed products (using SPFT tests). Also, a qualitative comparison of the FBSR bed products to a glass waste form (specifically the low-activity reference material (LRM) glass) was performed. For these comparisons, the relative surface areas of the FBSR and glass products had to be measured. Due to the more porous and irregular surface of FBSR bed products, the surface area of the bed products was determined using the Brunauer, Emmett, and Teller (BET) measurement method. The surface area of a glass is much smoother and the calculated geometric surface area is typically used for determining dissolution behavior.Presently there are no specifications or standard release rates that the FBSR tested materials have to meet, e.g. the data from the FBSR testing is normally used during subsequent Performance Assessment (PA) calculations. Since a PA calculation is not part of this study, the LAW and SBW steam reforming samples were compared to each other, to previous LAW FBSR SPFT results, and to the results from the LRM reference glass. The experimental durability data generated from this study suggests that an FBSR mineral waste form product would be an adequate alternative form to borosilicate glass. The tested FBSR mineral waste forms showed normalized release rates for matrix elements such as Si to be more than 200X slower than the LRM glass. However, further durability testing and mineral phase information is recommended to further substantiate these findings.
Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750°C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.