Escherichia coli-based cell extract is a vital component of inexpensive and high-yielding cell-free protein synthesis reactions. However, effective preparation of E. coli cell extract is limited to high-pressure (French press-style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. Here we report the viability of E. coli cell extract prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples. Specifically, we assessed the low-capital-cost lysis techniques of: (i) sonication, (ii) bead vortex mixing, (iii) freeze-thaw cycling, and (iv) lysozyme incubation to prepare E. coli cell extract for cell-free protein synthesis (CFPS). We also used simple shake flask fermentations with a commercially available E. coli strain. In addition, RNA polymerase was overexpressed in the E. coli cells prior to lysis, thus eliminating the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high-yielding E. coli-based extract was prepared using equipment requiring a reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. However, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. This work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels in the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. Results of the char combustion model are compared to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.
Coal is, and will remain for the foreseeable future, a critical energy production resource. Advanced models of coal conversion behavior in air and oxy-coal environments enhance the boiler operational efficiency and design optimization. Although coal conversion models have continuously improved over decades of research, not all aspects of coal particle heating and conversion have received equal treatment. Coal particle annealing is one aspect of the coal conversion process that is simultaneously highly sensitive to the conversion environment, exceptionally impactful on coal chemistry, and frequently neglected in coal models. However, the current body of literature has explored numerous aspects of coal annealing and has shed much light on a complex subject. This review fulfills two purposes: (1) to highlight quantitative observations from the literature and (2) to compile and make conveniently available a clean collection of literature data to facilitate future annealing models.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. However, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. This work focuses on the sensitivity of a recent comprehensive char conversion code named CCK, which treats surface oxidation and gasification reactions as well as the processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work the CCK code was adapted for the conditions of an oxy-coal system and subjected to global sensitivity analysis techniques in an effort to rank fundamental input parameters in order of importance. Comprehensive char conversion codes have dozens of fundamental parameters, some of which are not well-defined. Global sensitivity analysis was used to identify the most important submodels in order to direct additional research on model improvement. Results of this analysis showed that the annealing model, the oxidation reaction order, the swelling model, and the mode of burning parameter are the most influential and therefore prime candidates for improvement.
Wildfire behavior is dictated by the complex interaction of numerous physical phenomena including dynamic ambient and fire-induced winds, heat transfer, aerodynamic drag on the wind by the fuel and combustion. These phenomena create complex feedback effects between the fire and its surroundings. In this study, we aim to study the mechanisms by which buoyant flame dynamics along with vortical motions and instabilities control wildfire propagation. Specifically, this study employs a suite of simulations conducted with the physics-based coupled fire-atmosphere behavior model (FIRETEC). The simulations are initialized with a fire line and the fires are allowed to propagate on a grass bed, where the fuel heights and wind conditions are varied systematically. Flow variables are extracted to identify the characteristics of the alternating counter-rotational vortices, called towers and troughs, that drive convective heat transfer and fire spread. These vortices have previously been observed in wildfires and laboratory fires, and have also been observed to arise spontaneously in FIRETEC due to the fundamental physics incorporated in the model. However, these past observations have been qualitative in nature and no quantitative studies can be found in the literature which connected these coherent structures fundamental to fire behavior with the constitutive flow variables. To that end, a variety of state variables are examined in the context of these coherent structures under various wind profile and grass height conditions. Identification of various correlated signatures and fire-atmosphere feedbacks in simulations provides a hypothesis that can be tested in future observational or experimental efforts, potentially assisting experimental design, and can aid in the interpretation of data from in situ detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.