In situ g-C3N4@ZnO nanocomposites (with 0, 1, 3, 5, and 7 wt.% of g-C3N4 in nanocomposite) were synthesized via a one-pot hydrothermal method using precursors of urea, zinc nitrate hexahydrate, and hexamethylenetetramine. The g-C3N4@ZnO nanocomposites were characterized by X-ray diffraction, scanning electron microscope, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalyst activity of g-C3N4@ZnO nanocomposites was evaluated via methylene blue degradation experiment under visible light irradiation. The g-C3N4@ZnO nanocomposites showed an enhancement in photocatalytic activity in comparison to pure ZnO which increased with the g-C3N4 content (1, 3, 5, and 7 wt.%) in nanocomposites. The photocatalytic activity reached the highest efficiency of 96.8% when the content of g-C3N4 was 7.0 wt.%. Nanocomposite having 7.0 wt.% of g-C3N4 also showed good recyclability with degradation efficiency higher than 90% even in the 4th use. The improvement of photocatalytic activity could be attributed to the adsorption ability and effective separation of electron-hole pairs between g-C3N4 and ZnO. This work implies a simple method to in situ prepare the nanocomposite material of g-C3N4 and semiconductors oxide for photocatalyst applications with high efficiency and good recyclability.
BACKGROUND: Lung volume reduction surgery (LVRS) was introduced to alleviate clinical conditions in selected patients with heterogenous emphysema. Clarifying the most suitable patients for LVRS remained unclear.
AIM: This study was undertaken to specifically analyze the preoperative factor affecting to LVRS.
METHODS: The prospective study was conducted at 103 Military Hospital between July 2014 and April 2016. Severe heterogenous emphysema patients were selected to participate in the study. The information, spirometry, and body plethysmographic pulmonary function tests in 31 patients who underwent LVRS were compared with postoperative outcomes (changing in FEV1 and CAT scale).
RESULTS: Of the 31 patients, there was statistically significant difference in the outcome of functional capacity, lung function between two groups (FEV1 ≤ 50% and > 50%) (∆FEV1: 22.46 vs 18.32%; p = 0.042. ∆CAT: 6.85 vs 5.07; p = 0.048). Changes of the FEV1 and CAT scale were no statistically significant differences in three groups residual volume. Patients with total lung capacity < 140% had more improved than others (∆FEV1: 23.81 vs 15.1%; p = 0.031).
CONCLUSION: Preoperative spirometry and body plethysmographic pulmonary function tests were useful measures to selected severe heterogenous emphysema patients for LVRS. Patients with FEV1 ≤ 50%, TLC in the range of 100-140% should be selected.
Complex ferroelectric PbTiO3-modified 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 materials were synthesized by a conventional solid-state reaction method. The addition of PbTiO3 into host 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 materials are modified the ferroelectric properties of host materials where the maximum polarization slightly increased from 23.09 C\cm2 to 23.28 C\cm2 and the remnant polarization is found to increase from 10.07 C\cm2 to 11.31 C\cm2. The large piezoelectric dynamic coefficient value of 662 pm\V is obtained for 7 mol. % PbTiO3 modified 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 compounds as solid solution. Our work is expected to contribute to the role of A-site modification in lead-free ferroelectric BaTiO3-based materials for advanced function materials for electronic device applications.
Vietnam’s economy has been growing rapidly in the last 20 years, leading to significant increases in energy consumption as well as in carbon emissions. Most electricity is consumed by loads of industry and construction due to the country’s socio-economic development strategy. An energy saving strategy cannot be achieved if the industry factories lack energy consumption data. The installation of energy monitoring systems can help to improve energy efficiency by supplying daily, monthly, and yearly energy consumption reports. Moreover, major energy-consuming enterprises in Vietnam must implement solutions for energy-efficient use as prescribed in the Law on Energy Efficient Use. Therefore, this study aimed to determine the impact of an energy monitoring system as an improvement solution for energy efficiency in a typical major energy-consuming enterprise in Vietnam. The study’s results, after six months, show that the total saved electricity after installing the power monitoring system was 191,923 kWh. The company saved approximately 19.584 USD and reduced emission to the environment by 139 tons of CO2. In addition, the return on investment time of power monitoring systems is about 14 months, while the annual energy costs of the factory can be reduced by about 9.62% per year. Therefore, power monitoring systems should be promoted in factories with different scales to control energy wastage in the domestic industry field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.