No abstract
Background ChatGPT (OpenAI), a state-of-the-art large language model, has exhibited remarkable performance in various specialized applications. Despite the growing popularity and efficacy of artificial intelligence, there is a scarcity of studies that assess ChatGPT’s competence in addressing multiple-choice questions (MCQs) using KIDMAP of Rasch analysis—a website tool used to evaluate ChatGPT’s performance in MCQ answering. Objective This study aims to (1) showcase the utility of the website (Rasch analysis, specifically RaschOnline), and (2) determine the grade achieved by ChatGPT when compared to a normal sample. Methods The capability of ChatGPT was evaluated using 10 items from the English tests conducted for Taiwan college entrance examinations in 2023. Under a Rasch model, 300 simulated students with normal distributions were simulated to compete with ChatGPT’s responses. RaschOnline was used to generate 5 visual presentations, including item difficulties, differential item functioning, item characteristic curve, Wright map, and KIDMAP, to address the research objectives. Results The findings revealed the following: (1) the difficulty of the 10 items increased in a monotonous pattern from easier to harder, represented by logits (–2.43, –1.78, –1.48, –0.64, –0.1, 0.33, 0.59, 1.34, 1.7, and 2.47); (2) evidence of differential item functioning was observed between gender groups for item 5 (P=.04); (3) item 5 displayed a good fit to the Rasch model (P=.61); (4) all items demonstrated a satisfactory fit to the Rasch model, indicated by Infit mean square errors below the threshold of 1.5; (5) no significant difference was found in the measures obtained between gender groups (P=.83); (6) a significant difference was observed among ability grades (P<.001); and (7) ChatGPT’s capability was graded as A, surpassing grades B to E. Conclusions By using RaschOnline, this study provides evidence that ChatGPT possesses the ability to achieve a grade A when compared to a normal sample. It exhibits excellent proficiency in answering MCQs from the English tests conducted in 2023 for the Taiwan college entrance examinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.