Accurate AI diagnosis of cardiac arrhythmia on ECG data from 11 hospitals
Capable of diagnosing concurrent cardiac arrhythmiasAn ensemble model combining 12-and 1-lead models ranked first in CPSC2018 aVR and V1 found to be the best-performing single leads
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.
A combination of cloud-based deep learning (DL) algorithms with portable/wearable (P/W) devices has been developed as a smart heath care system to support automatic cardiac arrhythmias (CAs) classification using electrocardiography (ECG). However, long-term and continuous ECG monitoring is challenging because of limitations of batteries and transmission bandwidth of P/W devices while incorporated with consumer electronics (CE). A feasible approach to address this challenge is to decrease sampling rates. However, low sampling rates lead to lowresolution signals that hinder the CAs classification performance. In this study, we propose a DL-based ECG signal super-resolution framework (called SRECG) to enhance low-resolution ECG signals by jointly considering the accuracies when applied to the DLbased high-resolution multiclass classifier (HMC) of CAs. In our experiments, we downsampled the ECG signals from the CPSC2018 dataset and evaluated their HMC accuracies with and without the SRECG. Experimental results show that SRECG can well improve the HMC accuracies as compared to traditional interpolation methods. Moreover, approximately half of the CAs classification accuracies of HMC were maintained within the enhanced ECG signals by SRECG. The promising results confirm that SRECG can be suitably used to enhance low-resolution ECG signals from P/W devices with CE to improve their cloud-based HMC performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.