Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform — the apoptosome — that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy
The detection of intracellular microbial DNA is critical to an appropriate innate immune response, however current knowledge on how such DNA is sensed is limited. Here we identify IFI16, a PYHIN protein, as an intracellular DNA sensor mediating interferon-β (IFNβ)-induction. IFI16 directly associated with IFNβ-inducing viral DNA motifs. STING, a critical mediator of IFNβ responses to DNA, was recruited to IFI16 after DNA stimulation. Reduction of expression of IFI16, or its murine ortholog p204, by RNA interference inhibited DNA- and herpes simplex virus (HSV)-1-induced gene induction and IRF3 and NFκB activation. IFI16/p204 is the first PYHIN protein shown to be involved in IFNβ induction, and thus together with AIM2, a PYHIN protein that senses DNA for caspase 1 activation, is part of a new family of innate DNA sensors which we term AIM2-like receptors (ALRs).
Integrins are important adhesion receptors in all Metazoa that transmit conformational change bidirectionally across the membrane. Integrin α and β subunits form a head and two long legs in the ectodomain and span the membrane. Here, we define with crystal structures the atomic basis for allosteric regulation of the conformation and affinity for ligand of the integrin ectodomain, and how fibrinogen-mimetic therapeutics bind to platelet integrin α IIb b β3 . Allostery in the β 3 I domain alters three metal binding sites, associated loops and a α1-and α7-helices. Piston-like displacement of the a 7-helix causes a 62° reorientation between the β 3 I and hybrid domains. Transmission through the rigidly connected plexin/semaphorin/integrin (PSI) domain in the upper β 3 leg causes a 70Å separation between the knees of the α and β legs. Allostery in the head thus disrupts interaction between the legs in a previously described low-affinity bent integrin conformation, and leg extension positions the high-affinity head far above the cell surface.Integrins are adhesion receptors that transmit signals bidirectionally across the plasma membrane 1-4 . Rearrangements in integrin extracellular, transmembrane and cytoplasmic domains underlie diverse biological processes, including cell migration, morpho-genesis, immune responses and vascular haemostasis. The platelet-specific integrin α IIb β 3 is important in both the arrest of bleeding at sites of vascular injury and pathological thrombosis leading to heart attacks and stroke. Loss of the vascular endothelium results in platelet deposition, and receptors for collagen, thrombin and other agonists then initiate
The complete ectodomain of integrin αIIbβ3 reveals a bent, closed, low-affinity conformation, the β-knee, and a mechanism for linking cytoskeleton attachment to high affinity for ligand. Ca and Mg ions in the recognition site, including the synergistic metal ion binding site (SyMBS), are loaded prior to ligand binding. Electrophilicity of the ligand-binding Mg ion is increased in the open conformation. The β3 knee passes between the β3-PSI and αIIb-knob to bury the lower β-leg in a cleft, from which it is released for extension. Different integrin molecules in crystals and EM reveal breathing that appears on pathway to extension. Tensile force applied to the extended ligand-receptor complex stabilizes the closed, low-affinity conformation. By contrast, an additional lateral force applied to the β subunit to mimic attachment to moving actin filaments stabilizes the open, high-affinity conformation. This mechanism propagates allostery over long distances and couples cytoskeleton attachment of integrins to their high affinity state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.