Inflammasomes are key signalling platforms that detect pathogenic microorganisms and sterile stressors, and that activate the highly pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. In this Review, we discuss the complex regulatory mechanisms that facilitate a balanced but effective inflammasome-mediated immune response, and we highlight the similarities to another molecular signalling platform — the apoptosome — that monitors cellular health. Extracellular regulatory mechanisms are discussed, as well as the intracellular control of inflammasome assembly, for example, via ion fluxes, free radicals and autophagy
The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1β transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1β. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli. How the activation of gene transcription by signaling receptors enables NLRP3 activation remains elusive and controversial. In this study, we show that cell priming through multiple signaling receptors induces NLRP3 expression, which we identified to be a critical checkpoint for NLRP3 activation. Signals provided by NF-κB activators are necessary but not sufficient for NLRP3 activation, and a second stimulus such as ATP or crystal-induced damage is required for NLRP3 activation.
Alzheimer´s Disease (AD) is the world’s most common dementing illness. Deposition of amyloid beta peptide (Aβ) drives cerebral neuroinflammation by activating microglia1,2. Indeed, Aβ activation of the NLRP3 inflammasome in microglia is fundamental for IL-1β maturation and subsequent inflammatory events3. However, it remains unknown whether NLRP3 activation contributes to AD in vivo. Here, we demonstrate strongly enhanced active caspase-1 expression in human MCI and AD brains suggesting a role for the inflammasome in this neurodegenerative disease. NLRP3−/− or caspase-1−/− mice carrying mutations associated with familiar AD were largely protected from loss of spatial memory and other AD-associated sequelae and demonstrated reduced brain caspase-1 and IL-1β activation as well as enhanced Aβ clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of Aβ in the APP/PS1 model of Alzheimer’s disease. These results reveal an important role for the NLRP3 / caspase-1 axis in AD pathogenesis, and suggest that NLRP3 inflammasome inhibition represents a novel therapeutic intervention for AD.
The NLRP3 inflammasome is a component of the inflammatory process and its aberrant activation is pathogenic in inherited disorders such as the cryopyrin associated periodic syndromes (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes and atherosclerosis. We describe the development of MCC950, a potent, selective, small molecule inhibitor of NLRP3. MCC950 blocks canonical and non-canonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibits NLRP3 but not AIM2, NLRC4 or NLRP1 activation. MCC950 reduces Interleukin-1p (IL-1β) production in vivo and attenuates the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescues neonatal lethality in a mouse model of CAPS and is active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for the further study of the NLRP3 inflammasome in human health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.