The worldwide outbreak of severe acute respiratory syndrome (SARS) was shown to be associated with a novel coronavirus (CoV) now called SARS CoV. We report here the generation of SARS CoV S protein-pseu-
Drug toxicity and viral resistance limit the long-term efficacy of antiviral drug treatment for human immunodeficiency virus (HIV) infection. Thus, alternative therapies need to be explored. We tested the infusion of T lymphocytes transduced with a retroviral vector (M87o) that expresses an HIV entry-inhibitory peptide (maC46). Gene-modified autologous T cells were infused into ten HIV-infected patients with advanced disease and multidrug-resistant virus during anti-retroviral combination therapy. T-cell infusions were tolerated well, with no severe side effects. A significant increase of CD4 counts was observed after infusion. At the end of the 1-year follow-up, the CD4 counts of all patients were still around or above baseline. Gene-modified cells could be detected in peripheral blood, lymph nodes, and bone marrow throughout the 1-year follow-up, and marking levels correlated with the cell dose. No significant changes of viral load were observed during the first 4 months. Four of the seven patients who changed their antiviral drug regimen thereafter responded with a significant decline in plasma viral load. In conclusion, the transfer of gene-modified cells was safe, led to sustained levels of gene marking, and may improve immune competence in HIV-infected patients with advanced disease and multidrug-resistant virus.
Introduction of the post-transcriptional regulatory element (PRE) of woodchuck hepatitis virus (WHV) into the 3 0 untranslated region of retroviral and lentiviral gene transfer vectors enhances both titer and transgene expression. Optimal use of the PRE is often necessary to obtain vectors with sufficient performance for therapeutic applications. The enhancing activity of the PRE depends on the precise configuration of its sequence and the context of the vector and cell into which it is introduced. However, data obtained in the context of WHVassociated hepatocellular carcinomas suggests that the PRE might potentially contribute to tumorigenesis, especially if encoding a truncated version of the WHV X protein.
Adult stem cells are promising cellular vehicles for therapy of malignant gliomas as they have the ability to migrate into these tumors and even track infiltrating tumor cells. However, their clinical use is limited by a low passaging capacity that impedes large-scale production. In the present study, a bone marrow-derived, highly proliferative subpopulation of mesenchymal stem cells (MSCs)-here termed bone marrow-derived tumor-infiltrating cells (BM-TICs)-was genetically modified for the treatment of malignant glioma. Upon injection into the tumor or the vicinity of the tumor, BM-TICs infiltrated solid parts as well as the border of rat 9L glioma. After intra-tumoral injection, BM-TICs expressing the thymidine kinase of herpes simplex virus (HSV-tk) and enhanced green fluorescent protein (BM-TIC-tk-GFP) were detected by non-invasive positron emission tomography (PET) using the tracer 9-[4-[(18)F]fluoro-3-hydroxymethyl)butyl]guanine ([(18)F]FHBG). A therapeutic effect was demonstrated in vitro and in vivo by BM-TICs expressing HSV-tk through bystander-mediated glioma cell killing. Therapeutic efficacy was monitored by PET as well as by magnetic resonance imaging (MRI) and strongly correlated with histological analysis. In conclusion, BM-TICs expressing a suicide gene were highly effective in the treatment of malignant glioma in a rat model and therefore hold great potential for the therapy of malignant brain tumors in humans.
Vesicular stomatitis virus (VSV)-based oncolytic virotherapy has the potential to significantly improve the prognosis of aggressive malignancies such as brain cancer. However, VSV's inherent neurotoxicity has hindered clinical development so far. Given that this neurotropism is attributed to the glycoprotein VSV-G, VSV was pseudotyped with the nonneurotropic envelope glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP3VSV-GP). Compared to VSV, VSV-GP showed enhanced infectivity for brain cancer cells in vitro while sparing primary human and rat neurons in vitro and in vivo, respectively. In conclusion, VSV-GP has a much wider therapeutic window than VSV and is thus more suitable for clinical applications, especially in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.