The aim of this study is to construct an intelligent wireless sensing and control system to address health issues. We combine three technologies including (1) wireless sensing technology to develop an extendable system for monitoring environmental indicators such as temperature, humidity and CO 2 concentration, (2) ARIMA (autoregressive integrated moving average) to predict air quality trends and take action before air quality worsens, and (3) fuzzy theory which is applied to build an energy-saving mechanism for feedback control. Experimental results show the following. (1) A longer historical data collected time interval will reduce the effects of abnormal surges on prediction results. We find the ARIMA prediction model accuracy improving from 3.19 ± 3.47% for a time interval of 10 minutes to 1.71 ± 1.45% for a time interval of 50 minutes. (2) The stability experiment shows that the error rate of prediction model is also less than 7.5%. (3) In the energy-saving experiment, fuzzy logic-based decision model can reduce the 55% energy while maintaining adequate air quality.
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.