The physical and chemical properties as well as the oxidative potential (OP) of water soluble components of coal combustion fine particles were examined. A laboratory-scale pulverized-coal burning system was used to produce coal combustion particles at different burning temperatures of 550 C, 700 C, 900 C, and 1,100 C. Few studies have reported the effects of burning temperature on both the chemistry and toxicity of coal combustion particles. The highest mass emission factor of particulate matter less than 2.5 mm (PM 2.5) was found to be produced at 700 C (3.51 g/kg), owing to strong elemental carbon (EC) emission and ash formation (ions and elements) resulting from the incomplete combustion of tar and char, and mineral fragmentation. The highest organic carbon in PM 2.5 was found at 550 C. At a temperature higher than 700 C, the fraction of carbonaceous species decreased while the fractions of ions and elements increased owing to ash formation. Sulfate was found to be the dominant ionic species, followed by sodium, calcium, and magnesium. The highest emission of elements (Al,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.