Scatterplots commonly use color to encode categorical data. However, as datasets increase in size and complexity, the efficacy of these channels may vary. Designers lack insight into how robust different design choices are to variations in category numbers. This paper presents a crowdsourced experiment measuring how the number of categories and choice of color encodings used in multiclass scatterplots influences the viewers' abilities to analyze data across classes. Participants estimated relative means in a series of scatterplots with 2 to 10 categories encoded using ten color palettes drawn from popular design tools. Our results show that the number of categories and color discriminability within a color palette notably impact people's perception of categorical data in scatterplots and that the judgments become harder as the number of categories grows. We examine existing palette design heuristics in light of our results to help designers make robust color choices informed by the parameters of their data. CCS CONCEPTS• Human-centered computing → Empirical studies in visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.