In this work, we tackle the problem of Armenian named entity recognition, providing silver-and gold-standard datasets as well as establishing baseline results on popular models. We present a 163000-token named entity corpus automatically generated and annotated from Wikipedia, and another 53400token corpus of news sentences with manual annotation of people, organization and location named entities. The corpora were used to train and evaluate several popular named entity recognition models. Alongside the datasets, we release 50-, 100-, 200-, 300dimensional GloVe word embeddings trained on a collection of Armenian texts from Wikipedia, news, blogs, and encyclopedia.Index Terms-machine learning, deep learning, natural language processing, named entity recognition, word embeddings
In this work, we employ a semi-automatic method based on back translation to generate a sentential paraphrase corpus for the Armenian language. The initial collection of sentences is translated from Armenian to English and back twice, resulting in pairs of lexically distant but semantically similar sentences. The generated paraphrases are then manually reviewed and annotated. Using the method train and test datasets are created, containing 2360 paraphrases in total. In addition, the datasets are used to train and evaluate BERTbased models for detecting paraphrase in Armenian, achieving results comparable to the state-of-the-art of other languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.