In this paper, we propose preconditioned Krylov-subspace iterative methods to perform efficient DC and transient simulations for large-scale linear circuits with an emphasis on power delivery circuits. We also prove that a circuit with inductors can be simplified from MNA to NA format, and the matrix becomes an s.p.d matrix. This property makes it suitable for the conjugate gradient with incomplete Cholesky decomposition as the preconditioner, which is faster than other direct and iterative methods. Extensive experimental results on large-scale industrial power grid circuits show that our method is over 200 times faster for DC analysis and around 10 times faster for transient simulation compared to SPICE3. Furthermore, our algorithm reduces over 75% of memory usage than SPICE3 while the accuracy is not compromised.
The general approach to modeling binary data for the purpose of estimating the propagation of an internal solitary wave (ISW) is based on the maximum likelihood estimate (MLE) method. In cases where the number of observations in the data is small, any inferences made based on the asymptotic distribution of changes in the deviance may be unreliable for binary data (the model's lack of fit is described in terms of a quantity known as the deviance). The deviance for the binary data is given by D. Collett (2003). may be unreliable for binary data. Logistic regression shows that theP-values for the likelihood ratio test and the score test are both<0.05. However, the null hypothesis is not rejected in the Wald test. The seeming discrepancies inP-values obtained between the Wald test and the other two tests are a sign that the large-sample approximation is not stable. We find that the parameters and the odds ratio estimates obtained via conditional exact logistic regression are different from those obtained via unconditional asymptotic logistic regression. Using exact results is a good idea when the sample size is small and the approximateP-values are<0.10. Thus in this study exact analysis is more appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.