This study examined the behavioral and neuroelectrical impacts of a coordinative exercise intervention with different exercise intensities on executive function in kindergarten children. Participants underwent the Eriksen flanker test before and after an exercise program that involved 35-min sessions twice per week for 8 weeks, with either low or moderate intensity. Our findings revealed that exercise intervention, regardless of intensity, resulted in shorter reaction times and higher response accuracy in both congruent and incongruent trials, with incongruent trials receiving a larger benefit from exercise compared with congruent trials. Additionally, neuroelectrical activation demonstrated greater P3 amplitude and shorter P3 latency following exercise in both trials. These results suggest that coordinative exercise may specifically benefit prefrontal-dependent tasks in the immature brain state of kindergarten children by increasing the allocation of attentional resources and enhancing the efficiency of neurocognitive processing.
Measurements based on the EEG have featured prominently in shaping present-day concepts of the neurocognitive aspects of skilled performance. The techniques include measurements of spectral power, interelectrode coherence, event-related potential components such as the P300, slow potentials, and the method of cognitive inference. The advantages offered by EEG-based approaches lies in their spatiotemporal resolution (potentially 1 mm and less than 1 millisecond, respectively) and the potential to preserve ecological validity, i.e., to obtain measurements of cortical function under the same conditions that the task is normally performed. These studies indicate that activity is reduced in specific regions of the cerebral cortex of experts relative to that observed in novices. These changes occur over time as a result of practice. The authors argue that such cortical change results in less attentional demand and less cognitive interference with motor planning and execution. The findings attest to the plasticity of the central nervous system when one is engaged in goal-directed learning, and hold implications for understanding how the nervous system acquires voluntary skills, whether in the context of the training of an athlete or the rehabilitation of a patient who has lost motor skills due to a disease of the nervous system.
The purpose of this preliminary study was to examine whether an aquatic exercise intervention that involves both aerobic and coordinative exercises influences restraint inhibition in children with ADHD. Thirty participants were assigned to either an aquatic exercise or a wait-list control group. Participants were assessed by Go/Nogo Task and motor ability prior to and after an 8-week exercise intervention (twice per week, 90 min per session) or a control intervention. Significant improvements in accuracy associated with the Nogo stimulus and the coordination of motor skills were observed over time in the exercise group compared with the control group. Only main effects of group were found for reaction time and accuracy associated with the Go stimulus. These findings suggest that an exercise program that involves both quantitative and qualitative exercise characteristics facilitates the restraint inhibition component of behavioral inhibition in children with ADHD.
Sensorimotor rhythm (SMR) activity has been related to automaticity during skilled action execution. However, few studies have bridged the causal link between SMR activity and sports performance. This study investigated the effect of SMR neurofeedback training (SMR NFT) on golf putting performance. We hypothesized that preelite golfers would exhibit enhanced putting performance after SMR NFT. Sixteen preelite golfers were recruited and randomly assigned into either an SMR or a control group. Participants were asked to perform putting while electroencephalogram (EEG) was recorded, both before and after intervention. Our results showed that the SMR group performed more accurately when putting and exhibited greater SMR power than the control group after 8 intervention sessions. This study concludes that SMR NFT is effective for increasing SMR during action preparation and for enhancing golf putting performance. Moreover, greater SMR activity might be an EEG signature of improved attention processing, which induces superior putting performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.