An organic-inorganic hybrid zinc phosphate with 28-ring channels was synthesized by use of an organic ligand instead of organic amine template under a hydro(solvo)thermal condition. This crystalline zinc phosphate contains large channels constructed from 28 zinc and phosphate tetrahedral units. The walls of the channels consist of two types of zincophosphate chains, in which the Zn atoms are coordinated by 2,4,5-tri(4-pyridyl)-imidazole ligands as pendent groups. This compound exhibits yellow emission and interesting properties of removing cobalt, cadmium, and mercury cations from aqueous solution. A new two-dimensional organic-inorganic hybrid zincophosphate was also obtained by changing the solvent mixture ratios in the synthesis.
Nanostructured zinc phosphite templated by cetyltrimethylammonium (CTA(+)) cations was synthesized using a hydro(solvo)thermal method. This is the first example of a crystalline metal phosphite containing long carbon tails of the CTA(+) ions as templates in its structure, as is structurally characterized by single-crystal X-ray diffraction. The 2D inorganic structures with 4.8(2) topologies are constructed from the interconnection of tetrahedral ZnO3Br and HPO3 units, which are sandwiched between CTA(+) ion surfactants in a packing behavior of a largely lamellar liquid-crystalline structure to extend the interlayer d spacing to 28.05 Å. Adsorption experiment shows selective adsorption properties of 1-naphthol and a adsorption capacity of 0.17 mmol/mmol (CTA)ZnBr(HPO3). This compound has potential as an adsorbent for the removal of 1-naphthol pollutant from wastewater. In addition, the naphthol-adsorbed sample shows interesting luminescent properties that are different from that of an as-synthesized sample. The crystal structure, thermal stability, IR spectrum, adsorption, and photoluminescence properties have been studied.
A new zinc phosphite exhibited remarkable structural transformations upon heat stimulation to convert into a dehydrated form (NCU-2a) and a new structure, NCU-2b. The gas adsorption properties of the materials as well as the luminescence properties of LED devices fabricated using these materials were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.