SummaryThe clinical, biochemical and histopathological findings of an infantile disease occurring in the C3H-H-2°strain of mice, which has similarities with Reye's syndrome in children, is described.
Intracellular lipid accumulation (steatosis) and resultant lipotoxicity are key features of diabetic cardiomyopathy. Since cardiac hormone-sensitive lipase (HSL) is activated in diabetic mice, we sought to explore a pathophysiological function of cardiac HSL in the development of diabetic cardiomyopathy. Transgenic (Tg) mice with heart-specific HSL overexpression were generated, and cardiac histology, function, lipid profile, and gene expressions were analyzed after induction of diabetes by streptozotocin. Electron microscopy showed numerous lipid droplets in wild-type (Wt) hearts after 3 wk of diabetes, whereas Tg mice showed no lipid droplet accumulation. Cardiac content of acylglycerides was increased ∼50% with diabetes in Wt mice, whereas this was blunted in Tg hearts. Cardiac lipid peroxide content was twofold lower in Tg hearts than in Wt hearts. The mRNA expressions for peroxisome proliferator-activated receptor-α, genes for triacylglycerol synthesis, and lipoprotein lipase were increased with diabetes in Wt hearts, whereas this induction was absent in Tg hearts. Expression of genes associated with lipoapoptosis was decreased, whereas antioxidant protein metallothioneins were increased in diabetic Tg hearts. Diabetic Wt hearts showed interstitial fibrosis and increased collagen content. However, Tg hearts displayed no overt fibrosis, concomitant with decreased expression of collagens, transforming growth factor-β, and matrix metalloproteinase 2. Notably, mortality during the experimental period was approximately twofold lower in diabetic Tg mice compared with Wt mice. In conclusion, since HSL overexpression inhibits cardiac steatosis and fibrosis by apparently hydrolyzing toxic lipid metabolites, cardiac HSL could be a therapeutic target for regulating diabetic cardiomyopathy.
We have reported the clinical and biochemical findings in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency. This paper is the first report about cardiomyopathy injvs mice. Adult jvs mice (at the age of 2 3 months) show cardiac hypertrophy which is caused by enlargement of the cardiac muscle cell associated with increases of non-collagen protein and DNA content. Carnitine administration (2 mg/head, twice a day, from 1 month of age) significantly suppresses the cardiac hypertrophy, showing that carnitine deficiency plays an important role in the development of the cardiac hypertrophy. The discovery of cardiac hypertrophy in carnitine-deficient jvs mice will lead to clarification of the pathophysiology of cardiomyopathy in systemic carnitine deficiency in human beings.Cardiac hypertrophy; Systemic carnitine deficiency; Animal model; Juvenile visceral steatosis mice
Cardiac intracellular lipid accumulation (steatosis) is a pathophysiological phenomenon observed in starvation and diabetes mellitus. Perilipin 2 (PLIN2) is a lipid droplet (LD)-associated protein expressed in nonadipose tissues, including the heart. To explore the pathophysiological function of myocardial PLIN2, we generated transgenic (Tg) mice by cardiac-specific overexpression of PLIN2. Tg hearts showed accumulation of numerous small LDs associated with mitochondrial chains and high cardiac triacylglycerol (TAG) content [8-fold greater than wild-type (WT) mice]. Despite massive steatosis, cardiac uptake of glucose, fatty acids and VLDL, systolic function, and expression of metabolic genes were comparable in the two genotypes, and no morphological changes were observed by electron microscopy in the Tg hearts. Twenty-four hours of fasting markedly reduced steatosis in Tg hearts, whereas WT mice showed accumulation of LDs. Although activity of adipose triglyceride lipase in heart homogenate was comparable between WT and Tg mice, activity of hormone-sensitive lipase (HSL) was 40-50% less in Tg than WT mice under both feeding and fasting conditions, suggesting interference of PLIN2 with HSL. Mice generated through crossing of PLIN2-Tg mice and HSL-Tg mice showed cardiac-specific HSL overexpression and complete lack of steatosis. The results suggest that cardiac PLIN2 plays an important pathophysiological role in the development of dynamic steatosis and that the latter was prevented by upregulation of intracellular lipases, including HSL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.