Integration of renewable energy resources in microgrids has been increasing in recent decades. Due to the randomness in renewable resources such as solar and wind, the power generated can deviate from forecasted values. This variation may cause increased operating costs for committing costly reserve units or penalty costs for shedding load. In addition, it is often desired to charge/discharge and coordinate the energy storage units in an efficient and economical way. To address these problems, a novel battery operation cost model is proposed which considers a battery as an equivalent fuel-run generator to enable it to be incorporated into a unit commitment problem. A probabilistic constrained approach is used to incorporate the uncertainties of the renewable sources and load demands into the unit commitment (UC) and economic dispatch problems.Index Terms-Energy storage, microgrids, renewable energy, unit commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.