Renal cancer (RC) represents 3% of all cancers, with a 2% annual increase in incidence worldwide, opening the discussion about the need for screening. However, no established screening tool currently exists for RC. To tackle this issue, we assessed surface-enhanced Raman scattering (SERS) profiling of serum as a liquid biopsy strategy to detect renal cell carcinoma (RCC), the most prevalent histologic subtype of RC. Thus, serum samples were collected from 23 patients with RCC and 27 controls (CTRL) presenting with a benign urological pathology such as lithiasis or benign prostatic hypertrophy. SERS profiling of deproteinized serum yielded SERS band spectra attributed mainly to purine metabolites, which exhibited higher intensities in the RCC group, and Raman bands of carotenoids, which exhibited lower intensities in the RCC group. Principal component analysis (PCA) of the SERS spectra showed a tendency for the unsupervised clustering of the two groups. Next, three machine learning algorithms (random forest, kNN, naïve Bayes) were implemented as supervised classification algorithms for achieving discrimination between the RCC and CTRL groups, yielding an AUC of 0.78 for random forest, 0.78 for kNN, and 0.76 for naïve Bayes (average AUC 0.77 ± 0.01). The present study highlights the potential of SERS liquid biopsy as a diagnostic and screening strategy for RCC. Further studies involving large cohorts and other urologic malignancies as controls are needed to validate the proposed SERS approach.
Background
Bladder cancer (BC) has the highest per-patient cost of all cancer types. Hence, we aim to develop a non-invasive, point-of-care tool for the diagnostic and molecular stratification of patients with BC based on combined microRNAs (miRNAs) and surface-enhanced Raman spectroscopy (SERS) profiling of urine.
Methods
Next-generation sequencing of the whole miRNome and SERS profiling were performed on urine samples collected from 15 patients with BC and 16 control subjects (CTRLs). A retrospective cohort (BC = 66 and CTRL = 50) and RT-qPCR were used to confirm the selected differently expressed miRNAs. Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. The molecular stratification of BC based on miRNA and SERS profiling was performed to discriminate between high-grade and low-grade tumors and between luminal and basal types.
Results
Combining SERS data with three differentially expressed miRNAs (miR-34a-5p, miR-205-3p, miR-210-3p) yielded an Area Under the Curve (AUC) of 0.92 ± 0.06 in discriminating between BC and CTRL, an accuracy which was superior either to miRNAs (AUC = 0.84 ± 0.03) or SERS data (AUC = 0.84 ± 0.05) individually. When evaluating the classification accuracy for luminal and basal BC, the combination of miRNAs and SERS profiling averaged an AUC of 0.95 ± 0.03 across the three machine learning algorithms, again better than miRNA (AUC = 0.89 ± 0.04) or SERS (AUC = 0.92 ± 0.05) individually, although SERS alone performed better in terms of classification accuracy.
Conclusion
miRNA profiling synergizes with SERS profiling for point-of-care diagnostic and molecular stratification of BC. By combining the two liquid biopsy methods, a clinically relevant tool that can aid BC patients is envisaged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.