An extensive evaluation of 10 different satellite rainfall products was performed using station network over a complex topography, where elevation varies from below sea level to 4620 m. Evaluation was for two groups of products. The first group had low spatial (2.5u) and temporal (monthly) resolution and included the Global Precipitation Climatology Project (GPCP), the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) merged analysis (CMAP), and the Tropical Rainfall Measuring Mission (TRMM-3B43). The second group comprised products with relatively high spatial (0.1u to 1u) and temporal (3-hourly to 10-daily) resolution. These included the NOAA-CPC African rainfall estimation algorithm, GPCP one-degree-daily (1DD), TRMM-3B42, Tropical Applications of Meteorology using SATellite and other data (TAMSAT) estimates, and the CPC morphing technique (CMORPH). These products were aggregated to a 10-day total and remapped to spatial resolutions of 1u, 0.5u and 0.25u. TRMM-3B43 and CMAP from the first group and CMORPH, TAMSAT and TRMM-3B42 from the second group performed reasonably well.
Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non‐existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite‐based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite‐based rainfall products with relatively high spatial and temporal resolutions and quasi‐global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10‐day) and monthly time‐scales. The evaluation was done by comparing the satellite products with rain‐gauge data from about 1,200 stations. The CHIRP and CHIRPS products were also compared with two similar operational satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product at dekadal and monthly time‐scales, while TAMSAT performed better at the daily time‐scale. The performance of the different satellite products exhibits high spatial variability with weak performances over coastal and mountainous regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.