A comprehensive reconstruction of the Baltic Sea state from 1850 to 2006 is presented: driving forces are reconstructed and the evolution of the hydrography and biogeochemical cycles is simulated using the model BALTSEM. Driven by high resolution atmospheric forcing fields (HiResAFF), BALTSEM reproduces dynamics of salinity, temperature, and maximum ice extent. Nutrient loads have been increasing with a noteworthy acceleration from the 1950s until peak values around 1980 followed by a decrease continuing up to present. BALTSEM shows a delayed response to the massive load increase with most eutrophic conditions occurring only at the end of the simulation. This is accompanied by an intensification of the pelagic cycling driven by a shift from spring to summer primary production. The simulation indicates that no improvement in water quality of the Baltic Sea compared to its present state can be expected from the decrease in nutrient loads in recent decades.
Trend analyses were performed on several indicators of Arctic haze using data from sites located in the North American, Norwegian, Finnish and Russian Arctic for the spring months of March and April. Concentrations of nonseasalt (nss) SO 4 = in the Canadian, Norwegian and Finnish Arctic were found to have decreased by 30-70% from the early 1990s to present. The magnitude of the decrease depended on location. The trend in nss SO 4 = at Barrow, Alaska from 1997 to present, is unclear. Measurements at Barrow of light scattering by aerosols show a decrease of about 50% between the early 1980s and the mid-1990s for both March and April. Restricting the analysis to the more recent period of 1997 to present indicates an increase in scattering of about 50% during March. Aerosol NO 3 − measured at Alert, Canada has increased by about 50% between the early 1990s and 2003. Nss K + and light absorption, indicators of forest fires, have a seasonal maximum during the winter and spring and minimum during the summer and fall at both Alert and Barrow. Based on these data, the impact of summertime forest fire emissions on low-altitude surface sites within the Arctic is relatively small compared to winter/spring emissions. Key uncertainties about the impact of long range transport of pollution to the Arctic remain including the certainty of the recent detected trends; sources, transport and trends of soot; and radiative effects due to complex interactions between aerosols, clouds and radiation in the Arctic.
Multi-model ensemble simulations for the marine biogeochemistry and food web of the Baltic Sea were performed for the period 1850-2098, and projected changes in the future climate were compared with the past climate environment. For the past period 1850-2006, atmospheric, hydrological and nutrient forcings were reconstructed, based on historical measurements. For the future period 1961-2098, scenario simulations were driven by Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1 1748-9326/12/034005+08$33.00 c 2012 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 7 (2012) 034005 H E M Meier et alregionalized global general circulation model (GCM) data and forced by various future greenhouse gas emission and air-and riverborne nutrient load scenarios (ranging from a pessimistic 'business-as-usual' to the most optimistic case). To estimate uncertainties, different models for the various parts of the Earth system were applied. Assuming the IPCC greenhouse gas emission scenarios A1B or A2, we found that water temperatures at the end of this century may be higher and salinities and oxygen concentrations may be lower than ever measured since 1850. There is also a tendency of increased eutrophication in the future, depending on the nutrient load scenario. Although cod biomass is mainly controlled by fishing mortality, climate change together with eutrophication may result in a biomass decline during the latter part of this century, even when combined with lower fishing pressure. Despite considerable shortcomings of state-of-the-art models, this study suggests that the future Baltic Sea ecosystem may unprecedentedly change compared to the past 150 yr. As stakeholders today pay only little attention to adaptation and mitigation strategies, more information is needed to raise public awareness of the possible impacts of climate change on marine ecosystems.
Changes in water pH and colour since the late 1980s were studied in 35 small boreal lakes of varying hydrological and landscape settings but similar climate and acid deposition. The data was collected during the autumnal overturn on the annual basis except in lake with weekly sampling during the ice-free period. In addition to the deposition data information about catchment soil types as well as local meteorological and hydrological conditions were used for the long-term data interpretation. The lakes are situated in a small area in southern Finland, 130 km north from Helsinki, where sulphate deposition declined by [60% in one decade since the mid1980s. The results showed that water colour increased in most lakes while pH did not. In lakes dominated by surface runoff there was a distinct upward shift in colour, with an initial increase after the mid-1990s and a second increase in 2004. The first shift appeared when the sulphate deposition reached a level ca. 25% of that in 1988. However, the upward shift in colour also coincided with a change in hydrological conditions after several dry summers. In contrast, the second shift in colour clearly coincided with a switch in hydrology due to the abnormally wet summer of 2004 after severe drought in 2002-2003. Although the hydrological conditions indisputably had a key role in determining the annual variability in colour, a distinct negative relationship between acid deposition and water colour in 90% of the lakes strongly suggested that reduction in sulphate deposition fostered the leaching of coloured organic substances from the catchment soils. Increase in colour, in turn, strongly influenced lake water pH, and the present day higher organic matter concentrations seemingly depress pH values more than in the 1980s, before the reduction in acid deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.