Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.
Early detection of pathogens before the planting season is valuable to forecast disease occurrence. Therefore, rapid and reliable diagnostic approaches are urgently needed, especially for one of the most aggressive root knot nematodes, Meloidogyne enterolobii. In this study, we developed a novel primer–TaqMan probe set aimed at M. enterolobii. The primer–probe set was successfully applied in the identification and quantification of M. enterolobii via qPCR technology. It was also suitable for improved PCR technology, known as ddPCR analyses, and this work presents the first application of this technology for plant parasitic nematodes. Compared with qPCR, ddPCR exhibited better performance with regard to analytical sensitivity, which can provide a more accurate detection of M. enterolobii concealed in field soil. In addition, we generated standard curves to calculate the number of eggs in soil using the qPCR and ddPCR platforms. Hopefully, the results herein will be helpful for forecasting disease severity of M. enterolobii infection and adopting effective management strategies.
The cucurbit vegetable chieh-qua (Benincasa hispida var. chieh-qua How) is an important crop in South China and southeast Asian countries. Viral diseases cause substantial loss of chieh-qua yield. To identify the viruses that affect chieh-qua in China, ribosomal RNA-depleted total RNA sequencing was performed using chieh-qua leaf samples with typical viral symptoms. The virome of chieh-qua comprises four known viruses (melon yellow spot virus (MYSV), cucurbit chlorotic yellows virus (CCYV), papaya ringspot virus (PRSV) and watermelon silver mottle virus (WSMoV) and two novel viruses: cucurbit chlorotic virus (CuCV) in the genus Crinivirus and chieh-qua endornavirus (CqEV) in the genus Alphaendornavirus. The complete genomes of the two novel viruses in chieh-qua and three other isolates of CuCV in pumpkin, watermelon and cucumber were determined and the recombination signals of pumpkin and watermelon isolates of CuCV were detected. A reverse transcriptase PCR indicated that the dominant viruses of chieh-qua in Hainan are MYSV (66.67%) and CCYV (55.56%), followed by CuCV (27.41%), WSMoV (7.41%), cucumber mosaic virus (8.15%), zucchini yellow mosaic virus (6.67%), PRSV (6.67%) and CqEV (35.56%). Our findings support diagnostic and prevalence studies of viruses infecting chieh-qua in China, enabling sustainable control strategies for cucurbit viruses worldwide.
Spodoptera frugiperda is a highly destructive and polyphagous pest that causes severe damage to various crops, especially maize. The wide use of chemical insecticides to control S. frugiperda results in resistance against commonly used chemicals and resistant mutations will expand in populations accompanied by a spread to vulnerable areas. Consequently, more effective and friendly strategies must be explored to minimize losses caused by S. frugiperda. Entomopathogenic nematodes (EPN) are good candidates for the biological control of different species of insect pests, including S. frugiperda. In the current study, the infective capabilities of the EPN species HbSD, belonging to Hetrerorhabditis bacteriophora, were evaluated against S. frugiperda under laboratory, greenhouse and field conditions. In laboratory assays, HbSD was highly virulent against 3rd/5th instar larvae, which was related to HbSD concentration and exposure durations. In greenhouse assays, spraying aqueous HbSD also showed good performance in killing larvae on maize leaves. However, the virulence of HbSD decreased in field trials where many adverse factors affecting survival and efficacy were encountered by HbSD. Overall, our study provides an alternative EPN for the biological control of S. frugiperda with the potential to be developed as a sustainable option for efficient pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.