AbstractThe use of biomass to produce transportation and related fuels is of increasing interest. In the traditional approach of converting oils and fats to fuels, transesterification processes yield a very large coproduction of glycerol. Initially, this coproduct was largely ignored and then considered as a useful feedstock for conversion to various chemicals. However, because of the intrinsic large production, any chemical feedstock role would consume only a fraction of the glycerol produced, so other options had to be considered. The reforming of glycerol was examined for syngas production, but more recently the use of photocatalytic decomposition to hydrogen (H2) is of major concern and several approaches have been proposed. The subject of this review is this greener photocatalytic route, especially involving the use of solar energy and visible light. Several different catalyst designs are considered, together with a very wide range of secured rates of H2 production spanning several orders of magnitude, depending on the catalytic system and the process conditions employed. H2 production is especially high when used in glycerol-water mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.