Arabidopsis thaliana is an important and long-established model species for plant molecular biology, genetics, epigenetics, and genomics. However, the latest version of reference genome still contains a significant number of missing segments. Here, we reported a high-quality and almost complete Col-0 genome assembly with two gaps (named Col-XJTU) by combining the Oxford Nanopore Technologies ultra-long reads, Pacific Biosciences high-fidelity long reads, and Hi-C data. The total genome assembly size is 133,725,193 bp, introducing 14.6 Mb of novel sequences compared to the TAIR10.1 reference genome. All five chromosomes of the Col-XJTU assembly are highly accurate with consensus quality (QV) scores > 60 (ranging from 62 to 68), which are higher than those of the TAIR10.1 reference (ranging from 45 to 52). We completely resolved chromosome (Chr) 3 and Chr5 in a telomere-to-telomere manner. Chr4 was completely resolved except the nucleolar organizing regions, which comprise long repetitive DNA fragments. The Chr1 centromere (CEN1), reportedly around 9 Mb in length, is particularly challenging to assemble due to the presence of tens of thousands of CEN180 satellite repeats. Using the cutting-edge sequencing data and novel computational approaches, we assembled a 3.8-Mb-long CEN1 and a 3.5-Mb-long CEN2. We also investigated the structure and epigenetics of centromeres. Four clusters of CEN180 monomers were detected, and the centromere-specific histone H3-like protein (CENH3) exhibited a strong preference for CEN180 Cluster 3. Moreover, we observed hypomethylation patterns in CENH3-enriched regions. We believe that this high-quality genome assembly, Col-XJTU, would serve as a valuable reference to better understand the global pattern of centromeric polymorphisms, as well as the genetic and epigenetic features in plants.
For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.
Complex structural variants (CSVs) are genomic alterations that have more than two breakpoints and are considered as the simultaneous occurrence of simple structural variants. However, detecting the compounded mutational signals of CSVs is challenging through a commonly used model-match strategy. As a result, there has been limited progress for CSV discovery compared with simple structural variants. Here, we systematically analyzed the multi-breakpoint connection feature of CSVs, and proposed Mako, utilizing a bottom-up guided model-free strategy, to detect CSVs from paired-end short-read sequencing. Specifically, we implemented a graph-based pattern growth approach, where the graph depicts potential breakpoint connections, and pattern growth enables CSV detection without pre-defined models. Comprehensive evaluations on both simulated and real datasets revealed that Mako outperformed other algorithms. Notably, validation rates of CSVs on real data based on experimental and computational validations as well as manual inspections are around 70%, where the medians of experimental and computational breakpoint shift are 13 bp and 26 bp, respectively. Moreover, the Mako CSV subgraph effectively characterized the breakpoint connections of a CSV event and uncovered a total of 15 CSV types, including two novel types of adjacent segment swap and tandem dispersed duplication. Further analysis of these CSVs also revealed the impact of sequence homology on the formation of CSVs. Mako is publicly available at https://github.com/xjtu-omics/Mako.
Opium poppy (Papaver somniferum), which produces benzylisoquinoline alkaloids (BIAs), is an important medicinal plant. However, due to the 70.9% repetitive content and the whole-genome duplication event of the opium poppy genome, it is difficult to generate accurate and comprehensive gene annotations. To overcome this problem, we used the PacBio single-molecule long-read isoform sequencing (IsoSeq) technology to improve opium poppy genome annotation and identify genome-wide alternative splicing (AS). In total, we identified 410 699 full-length isoforms, correcting 1007 misannotated genes and identifying 10 473 unannotated genes. Notably, the annotations of two BIA metabolism genes, CYP80B1 (PS0533980.1) and BBE (PS1014490.1), were corrected, and a novel copy of CYP80B1 was discovered. In addition, we found current opium poppy genome annotation was biased on GC content and exon number, leading to missing of some younger genes. Furthermore, 474 169 novel splicing junctions were identified, revealing splicing sites characteristics difference of genes originating from different phylostratums. Based on the splicing junctions identified by the full-length transcripts, we discovered the tissue-and development-specific AS modes. More specifically, we found the percentage of retained introns (RIs) in the petal and stamen decreased, correlating with the lower GC content of the transcriptome. Also, there was a decrease in the percentage of splicing (PSI) at RI sites after cotyledon growth. The development-related pathways were also enriched among the genes of the RI sites, indicating the post-transcriptional mechanism during the seedling development of opium poppy. Our data provide abundant transcriptome insights into the AS of the opium poppy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.