Golub and Meurant have shown how to use the symmetric block Lanczos algorithm to compute block Gauss quadrature rules for the approximation of certain matrix functions. We describe new block quadrature rules that can be computed by the symmetric or nonsymmetric block Lanczos algorithms and yield higher accuracy than standard block Gauss rules after the same number of steps of the symmetric or nonsymmetric block Lanczos algorithms. The new rules are block generalizations of the generalized averaged Gauss rules introduced by Spalevi´c. Applications to network analysis are presente
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.