TGF-beta is a therapeutic target for renal fibrosis. Scientists have long sought ways to antagonize TGF-beta to ameliorate diabetic nephropathy. Bone morphogenetic protein (BMP-2) is a member of the TGF-beta superfamily and is highly regulated in the kidney. Thus, the role of BMP-2 was investigated in NRK-49F cells (rat fibroblasts). We showed that TGF-beta1 induces an increase in fibronectin. Treatment with exogenous BMP-2 or pCMV-BMP-2 significantly reversed the TGF-beta1-induced increase in fibronectin concomitant with a significant decrease in type I TGF-beta receptors (TGF-beta RI). Moreover, BMP-2 significantly shortened the half-life of TGF-beta RI. These results are related to proteosomal activation because MG132, a proteasome inhibitor, abolished BMP-2-mediated degradation of TGF-beta RI. This was confirmed because BMP-2 time course dependently enhanced the ubiquitination level of TGF-beta RI. In addition, Smads would seem to be involved in the interaction of BMP-2 and TGF-beta. We demonstrated that BMP-2 significantly reversed the TGF-beta1-induced increase in pSmad2/3 and reversed the TGF-beta1-induced decrease in inhibitory Smad7. Most importantly, Smad7 small interfering RNA abolished the BMP-2-induced decrease in TGF-beta RI. We evaluated the clinical efficacy of BMP-2 using unilateral ureteral obstruction rats. BMP-2 was administered ip for 7 d. In the unilateral ureteral obstruction kidneys, interstitial fibrosis was prominent. However, treatment with BMP-2 dramatically reduced Masson's trichrome staining (collagen) in the interstitial and tubular areas of the kidneys concomitantly with a reduction in TGF-beta RI. These results suggest that BMP-2 acts as a novel fibrosis antagonizing cytokine partly by down-regulating TGF-beta RI and Smads.
Our data suggested increased production of IL-6 and decreased production of IFN gamma of cord blood mononuclear cells appear to be the hallmark of newborns from the high-risk population.
Dysregulation of epithelial-to-mesenchymal transition (EMT) may contribute to renal fibrogenesis. Our previous study indicated that bone morphogenetic protein-2 (BMP-2) significantly reversed transforming growth factor (TGF)-β1-induced renal interstitial fibrosis. In this study, we examined the underlying mechanism and elucidate the regulation of EMT process under BMP-2 treatment. Cultured renal interstitial fibroblast (NRK-49F) was treated with TGF-β1 (10 ng/ml) with or without BMP-2 (10-250 ng/ml) for 24 h. The expression of α-smooth muscle actin (α-SMA), E-cadherin, fibronectin, or Snail transcriptional factors was analyzed by immunofluorescence staining or Western blotting. Cell migration was analyzed by wound-healing assay. NRK-49F treated with TGF-β1 induced significant EMT including upregulatioin of α-SMA, fibronectin, and snail proteins and down-regulation of E-cadherin. Interestingly, co-treatment with BMP-2 dose-dependently reversed TGF-β1-induced cellular fibrosis, cell migration, and above EMT change. The above effect was closely correlated with Snail since BMP-2 dose- and time-course dependently induced a significant decrease in the level of Snail. Moreover, Snail siRNA significantly reversed TGF-β1-induced increases in the level of α-SMA and fibronectin (intracellular and extracellular). We suppose that BMP-2 have the potential to attenuate TGF-β1-induced renal interstitial fibrosis by attenuating Snail expression and reversing EMT process.
Albumin is not only a risk factor for diabetic nephropathy (DN), but also a therapeutic target. Hence, scientists have long sought ways to elucidate the interactions between albumin and diabetic renal tubule fibrosis. CD36, a surface receptor for thrombospondin-1, has been reported to interact with latent transforming growth factor-beta1 (TGF-beta1) and activate its fibrogenic bioactivity. This study elucidates the interactions between CD36 and renal tubule fibrosis. LLC-PK1 cells were applied to represent renal proximal tubule cells. The expression of CD36 was evaluated by flow cytometry. Fibronectin was assayed by Western blot and enzyme-linked immunosorbent assay (ELISA). Bioactive TGF-beta1 was assayed by ELISA. We demonstrated that albumin was shown significantly to inhibit cell growth without affecting hypertrophy status since protein content and cell size remained unaffected under albumin treatment. Moreover, albumin dose-dependently (0, 1, or 10 mg/ml) enhanced the secretion of bioactive TGF-beta1 and fibronectin with the upregulation of CD36. Intriguingly, CD36 siRNA, a potent silencer for CD36 effectively suppressed the albumin-induced increase in CD36, TGF-beta1, and even fibronectin level. Accordingly, albumin is a pro-fibrogenic factor for proximal tubule cells since albumin per se markedly upregulated the expression of TGF-beta1 and fibronectin. Most importantly, CD36 may mediate albumin-induced cellular fibrosis since CD36 siRNA appeared to have anti-fibrosis effects. This work suggests that CD36 is a novel and potential therapeutic target for diabetic renal tubule fibrosis.
Diabetic nephropathy is characterized by early hypertrophy in both glomerular and tubuloepithelial elements. However, no studies to date have established a direct causal link between hyperglycaemia and renal hypertrophy. Our previous studies have found that high glucose does not induce cellular hypertrophy or expression of TGF-beta1 (transforming growth factor-beta1) in distal renal tubule cells [Yang, Guh, Yang, Lai, Tsai, Hung, Chang and Chuang (1998) J. Am. Soc. Nephrol. 9, 182-193]. In the present study, we used AGEs (advanced glycation end-products) to mimic long-term hyperglycaemia. Similar to glucose, AGEs did not induce TGF-beta1 mRNA in distal renal tubule cells [MDCK (Madin-Darby canine kidney) cells]; however, TGF-beta1 bioactivity was increased significantly. This result indicated post-translational regulation. Since TSP-1 (thrombospondin-1) has been demonstrated to activate latent TGF-beta1 in a variety of systems, the following experiments were performed. We found that AGEs dose-dependently increased both intracellular and extracellular levels of TSP-1. Purified TSP-1, like AGEs, increased the cellular protein content. Furthermore, anti-TSP-1 neutralizing antibodies attenuated the AGE-induced increase in TGF-beta1 bioactivity and hypertrophy. Thus TSP-1 might mediate AGE-induced distal renal tubule hypertrophy. In addition, we observed several putative transcription factor binding sites in the TSP-1 promoter, including those for AP-1 (activator protein-1), CREB (cAMP response element binding protein), NF-kappaB (nuclear factor-kappaB), SRF (serum response factor) and HSF (heat-shock factor), by sequence mapping. We used an enhancer assay to screen possible transcription factors involved. We showed that AP-1 and CREB were specifically induced by AGEs; furthermore, TFD (transcription factor decoy) for AP-1 could attenuate the AGE-induced increases in TSP-1 levels and cellular hypertrophy. Thus regulation of TSP-1 might be critical for hyperglycaemic distal tubule hypertrophy. Furthermore, TSP-1 TFD might be a potential approach to ameliorate diabetic renal hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.