An OFET based on P50 exhibited air-stable n-channel behavior with an electron mobility of 7.8 × 10−3 cm2 V−1 s−1 under ambient conditions without annealing.
Excitation energy transport in a biomimetic molecular nanoarray constructed from LH2 antenna complexes is investigated by a master equation approach including the effect of coherent hopping. Calculated stationary and transient fluorescence signals upon incidence of a diffraction-limited light pulse are compared with measurements. Energy transport was established from the influence of active energy-guiding layers on the observed fluorescence emission. Energy migration occurs as a result of efficient coupling between many hundreds of LH2 complexes. We obtain an analytical expression of stationary fluorescence distribution solving the master equations of the system. The time dependent fluorescence intensity is derived using the same formalism. The numerical results show a reasonable consistency with the experimental result in the engineered nanoarray of LH2 complexes. In addition, our results show that quantum coherence mechanism is necessary to explain the long distance energy transport. These results demonstrate the potential for long-range energy propagation in hybrid systems composed of natural light harvesting antenna molecules from photosynthetic organisms.
High citric acid content in kiwifruit wine would lead to bad sensory experience and quality deterioration. It is opportune and crucial to develop an appropriate and feasible method to degrade citric acid for kiwifruit wine. The non-Saccharomyces yeasts confirmed to have the ability to degrade citric acid were screened and used in kiwifruit wine fermentation in the study. A representative number of 23 yeasts with a strong citric acid degradation ability was identified by molecular approaches. JT-1-3, identified to be Pichia fermentans, was preferred for high citric acid degradation and strong stress resistance in association with RV002 (commercial Saccharomyces cerevisiae). Then it was pure-cultured in kiwifruit juice, and the results indicated that citric, malic and tartaric acids declined significantly from 12.30, 3.09 and 0.61 g/L to 11.00, 2.02 and 0.41 g/L after fermentation, respectively, resulting in the significant decrease in total acid in kiwifruit wine. The analytical profiles for amino acids and volatile compounds showed that Pichia fermentans JT-1-3 could improve amino acids’ proportion and increase the volatile compounds of alcohols, esters and phenols. This work indicated that JT-1-3 has great potential to be applied for fruit wine with high level citric acid.
Pulsed electric fields (PEF) were utilized for inhibition of polyphenoloxidase (PPO) of pear. The effects of PEF electric field strength, treatment time and the temperature on the reduction of PPO activity were evaluated in this study. A maximum of 95.5% inactivation of pear PPO was observed with the PEF treatment at 35 kV/cm for 1200 ?s at 40°C. The classical first-order inactivation as well as modified Hülshegers kinetic model adequately described the enzymatic inhibition in PEF processing. The second-order polynomial equation was a suitable model to analyze the inactivation of PPO using PEF technology since the PEF parameters such as PEF electric field strength, treatment time and temperature could be involved in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.